W=[350,245;175,90;100,120;160,130;395,290;45,50;240,200;110,200];%地面用户位置
V=[270,70;130,240];%窃听者位置
X=10;%窃听者位置估计误差
Hu=120;He=110;%UAV高度
beta1=10^(-5);beta2=10^(-4);%信道条件
r=10^(-11);%自干扰因数
Pjam=0.1;Puavmax=1;Puemax=0.1;
B=10^(6);T=0.16;Dmin=60*8*1024;
o=10^(-14);%噪声功率
k=10^(-27);%功率消耗因数
D=[37*1024*8,49.69*8*1024,37.88*8*1024,34.64*8*1024];%卸载用户的任务总量
yita=[0.96,0.72,0.94,1];%卸载率
F=1000;%ibit所需CPU周期数
fmaxuav=2*10^(10);f0=2*10^(8);
fiu=fmaxuav/4;
rou=r*Pjam+o;
Pm=[0.05,0.05,0.05,0.05,0.02,0.02,0.02,0.02];
Pl=k*f0*f0*f0;
x=10;y=160;%合法UVA位置
hiu=zeros(1,8);
hiemax=zeros(2,8);
hkemin=zeros(2,8);
for i=1:8
hiu(i)=beta1/(Hu^2+(norm([x,y]-W(i,:)))^2);
for v=1:2
hiemax(v,i)=beta1/(He^2+(norm(W(i,:)-V(v,:))-X)^2);
hkemin(v,i)=beta1/(He^2+(norm(W(i,:)-V(v,:))+X)^2);
end
end
heuminv1=beta2/((Hu-He)^2+(norm([x,y]-V(1,:))+X)^2);
heuminv2=beta2/((Hu-He)^2+(norm([x,y]-V(2,:))+X)^2);
we1=Pjam*heuminv1+o;
we2=Pjam*heuminv2+o;
%-------------------------------------------------optimiaze----------------------------------------------
cvx_begin
variables p1 p2 p3 p4 p5 p6 p7 p8 C0 r0 ;
%--------------------------------------------------I4(i)----------------------------------
b1=hiu(2)*(p2-Pm(2))+hiu(3)*(p3-Pm(3))+hiu(4)*(p4-Pm(4))+hiu(5)*(p5-Pm(5))+hiu(6)*(p6-Pm(6))+hiu(7)*(p7-Pm(7))+hiu(8)*(p8-Pm(8));
a1=Pm(2)*hiu(2)+Pm(3)*hiu(3)+Pm(4)*hiu(4)+Pm(5)*hiu(5)+Pm(6)*hiu(6)+Pm(7)*hiu(7)+Pm(8)*hiu(8)+rou;
I41=log(a1)+b1/(a1*log(2));
b2=hiu(1)*(p1-Pm(1))+hiu(3)*(p3-Pm(3))+hiu(4)*(p4-Pm(4))+hiu(5)*(p5-Pm(5))+hiu(6)*(p6-Pm(6))+hiu(7)*(p7-Pm(7))+hiu(8)*(p8-Pm(8));
a2=Pm(1)*hiu(1)+Pm(3)*hiu(3)+Pm(4)*hiu(4)+Pm(5)*hiu(5)+Pm(6)*hiu(6)+Pm(7)*hiu(7)+Pm(8)*hiu(8)+rou;
I42=log(a2)+b2/(a2*log(2));
b3=hiu(1)*(p1-Pm(1))+hiu(2)*(p2-Pm(2))+hiu(4)*(p4-Pm(4))+hiu(5)*(p5-Pm(5))+hiu(6)*(p6-Pm(6))+hiu(7)*(p7-Pm(7))+hiu(8)*(p8-Pm(8));
a3=Pm(1)*hiu(1)+Pm(2)*hiu(2)+Pm(4)*hiu(4)+Pm(5)*hiu(5)+Pm(6)*hiu(6)+Pm(7)*hiu(7)+Pm(8)*hiu(8)+rou;
I43=log(a3)+b3/(a3*log(2));
b4=hiu(1)*(p1-Pm(1))+hiu(2)*(p2-Pm(2))+hiu(3)*(p3-Pm(3))+hiu(5)*(p5-Pm(5))+hiu(6)*(p6-Pm(6))+hiu(7)*(p7-Pm(7))+hiu(8)*(p8-Pm(8));
a4=Pm(1)*hiu(1)+Pm(2)*hiu(2)+Pm(3)*hiu(3)+Pm(5)*hiu(5)+Pm(6)*hiu(6)+Pm(7)*hiu(7)+Pm(8)*hiu(8)+rou;
I44=log(a4)+b4/(a4*log(2));
%----------------------------------------------------I5-----------------------------------------------------------------
cv1=0;cv2=0;
for i=1:8
cv1=cv1+Pm(i)*hkemin(1,i);
cv2=cv2+Pm(i)*hkemin(2,i);
end
cv1=cv2+we1;
cv2=cv2+we2;
% j=p1*hiu(1)+p2*hiu(2)+p3*hiu(3)+p4*hiu(4)+p5*hiu(5)+p6*hiu(6)+p7*hiu(7)+p8*hiu(8)+rou;
l=zeros(1,4);
for i=1:4
l(i)=D(i)*yita(i)/(B*(T-F*D(i)*yita(i)/fiu));
end
d1=hkemin(1,1)*(p1-Pm(1))+hkemin(1,2)*(p2-Pm(2))+hkemin(1,3)*(p3-Pm(3))+hkemin(1,4)*(p4-Pm(4))+hkemin(1,5)*(p5-Pm(5))+hkemin(1,6)*(p6-Pm(6))+hkemin(1,7)*(p7-Pm(7))+hkemin(1,8)*(p8-Pm(8));
d2=hkemin(2,1)*(p1-Pm(1))+hkemin(2,2)*(p2-Pm(2))+hkemin(2,3)*(p3-Pm(3))+hkemin(2,4)*(p4-Pm(4))+hkemin(2,5)*(p5-Pm(5))+hkemin(2,6)*(p6-Pm(6))+hkemin(2,7)*(p7-Pm(7))+hkemin(2,8)*(p8-Pm(8));
I511=log(Pm(1)*hiemax(1,1)+(cv1-Pm(1)*hkemin(1,1)))+(hiemax(1,1)*(p1-Pm(1))+(d1-hkemin(1,1)*(p1-Pm(1))))/((Pm(1)*hiemax(1,1)+cv1-Pm(1)*hkemin(1,1))*log(2));
I521=log(Pm(2)*hiemax(1,2)+(cv1-Pm(2)*hkemin(1,2)))+(hiemax(1,2)*(p2-Pm(2))+(d1-hkemin(1,2)*(p2-Pm(2))))/((Pm(2)*hiemax(1,2)+cv1-Pm(2)*hkemin(1,2))*log(2));
I531=log(Pm(3)*hiemax(1,3)+(cv1-Pm(3)*hkemin(1,3)))+(hiemax(1,3)*(p3-Pm(3))+(d1-hkemin(1,3)*(p3-Pm(3))))/((Pm(3)*hiemax(1,3)+cv1-Pm(3)*hkemin(1,3))*log(2));
I541=log(Pm(4)*hiemax(1,4)+(cv1-Pm(4)*hkemin(1,4)))+(hiemax(1,4)*(p4-Pm(4))+(d1-hkemin(1,4)*(p4-Pm(4))))/((Pm(4)*hiemax(1,4)+cv1-Pm(4)*hkemin(1,4))*log(2));
I512=log(Pm(1)*hiemax(2,1)+(cv2-Pm(1)*hkemin(2,1)))+(hiemax(2,1)*(p1-Pm(1))+(d2-hkemin(2,1)*(p1-Pm(1))))/((Pm(1)*hiemax(2,1)+cv2-Pm(1)*hkemin(2,1))*log(2));
I522=log(Pm(2)*hiemax(2,2)+(cv2-Pm(2)*hkemin(2,2)))+(hiemax(2,2)*(p2-Pm(2))+(d2-hkemin(2,2)*(p2-Pm(2))))/((Pm(2)*hiemax(2,2)+cv2-Pm(2)*hkemin(2,2))*log(2));
I532=log(Pm(3)*hiemax(2,3)+(cv2-Pm(3)*hkemin(2,3)))+(hiemax(2,3)*(p3-Pm(3))+(d2-hkemin(2,3)*(p3-Pm(3))))/((Pm(3)*hiemax(2,3)+cv2-Pm(3)*hkemin(2,3))*log(2));
I542=log(Pm(4)*hiemax(2,4)+(cv2-Pm(4)*hkemin(2,4)))+(hiemax(2,4)*(p4-Pm(4))+(d2-hkemin(2,4)*(p4-Pm(4))))/((Pm(4)*hiemax(2,4)+cv2-Pm(4)*hkemin(2,4))*log(2));
%--------------------------------------------------------------------------------------------------
maximize C0
subject to
log(p1*hiu(1)+p2*hiu(2)+p3*hiu(3)+p4*hiu(4)+p5*hiu(5)+p6*hiu(6)+p7*hiu(7)+p8*hiu(8)+rou)-I41-r0>=C0;
log(p1*hiu(1)+p2*hiu(2)+p3*hiu(3)+p4*hiu(4)+p5*hiu(5)+p6*hiu(6)+p7*hiu(7)+p8*hiu(8)+rou)-I42-r0>=C0;
log(p1*hiu(1)+p2*hiu(2)+p3*hiu(3)+p4*hiu(4)+p5*hiu(5)+p6*hiu(6)+p7*hiu(7)+p8*hiu(8)+rou)-I43-r0>=C0;
log(p1*hiu(1)+p2*hiu(2)+p3*hiu(3)+p4*hiu(4)+p5*hiu(5)+p6*hiu(6)+p7*hiu(7)+p8*hiu(8)+rou)-I44-r0>=C0;
I511-log(cv1-Pm(1)*hkemin(1,1))<=r0;
I521-log(cv1-Pm(2)*hkemin(1,2))<=r0;
I531-log(cv1-Pm(3)*hkemin(1,3))<=r0;
I541-log(cv1-Pm(4)*hkemin(1,4))<=r0;
I512-log(cv2-Pm(1)*hkemin(2,1))<=r0;
I522-log(cv2-Pm(1)*hkemin(2,2))<=r0;
I532-log(cv2-Pm(1)*hkemin(2,3))<=r0;
I542-log(cv2-Pm(1)*hkemin(2,4))<=r0;
log(p1*hiu(1)+p2*hiu(2)+p3*hiu(3)+p4*hiu(4)+p5*hiu(5)+p6*hiu(6)+p7*hiu(7)+p8*hiu(8)+rou)-I41>=l(1);
log(p1*hiu(1)+p2*hiu(2)+p3*hiu(3)+p4*hiu(4)+p5*hiu(5)+p6*hiu(6)+p7*hiu(7)+p8*hiu(8)+rou)-I42>=l(2);
log(p1*hiu(1)+p2*hiu(2)+p3*hiu(3)+p4*hiu(4)+p5*hiu(5)+p6*hiu(6)+p7*hiu(7)+p8*hiu(8)+rou)-I43>=l(3);
log(p1*hiu(1)+p2*hiu(2)+p3*hiu(3)+p4*hiu(4)+p5*hiu(5)+p6*hiu(6)+p7*hiu(7)+p8*hiu(8)+rou)-I44>=l(4);
p1<=Puemax-Pl;
p2<=Puemax-Pl;
p3<=Puemax-Pl;
p4<=Puemax-Pl;
p5<=Puemax-Pl;
p6<=Puemax-Pl;
p7<=Puemax-Pl;
p8<=Puemax-Pl;
cvx_end
Your problem is reported as unbounded. That suggests your model is not adequately formulated, at least with the input data you used. Your model is big and complicated, and presumably you understand it better than I do, so you should figure out why it is unbounded.
You might want to improve the scaling (choice of units) in your problem. Numbers such as 10^(-27) may cause difficulties for solvers, depending on how they are used.
Also, you might get more reliable solutions if you follow the advice at CVXQUAD: How to use CVXQUAD's Pade Approximant instead of CVX's unreliable Successive Approximation for GP mode, log, exp, entr, rel_entr, kl_div, log_det, det_rootn, exponential cone. CVXQUAD's Quantum (Matrix) Entropy & Matrix Log related functions