Why Optimal value (cvx_optval): NaN

Calling Mosek 9.1.9: 234 variables, 25 equality constraints

MOSEK Version 9.1.9 (Build date: 2019-11-21 11:34:40)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Windows/64-X86

MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (1) of matrix ‘A’.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (4) of matrix ‘A’.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (10) of matrix ‘A’.
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 25
Cones : 8
Scalar variables : 54
Matrix variables : 5
Integer variables : 0

Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries : 1 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 25
Cones : 8
Scalar variables : 54
Matrix variables : 5
Integer variables : 0

Optimizer - threads : 6
Optimizer - solved problem : the primal
Optimizer - Constraints : 17
Optimizer - Cones : 9
Optimizer - Scalar variables : 47 conic : 26
Optimizer - Semi-definite variables: 5 scalarized : 390
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 100 after factor : 111
Factor - dense dim. : 0 flops : 2.04e+05
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 1.9e+02 1.0e+00 1.0e+00 0.00e+00 0.000000000e+00 0.000000000e+00 1.0e+00 0.02
1 4.2e+01 2.2e-01 2.9e-01 -5.32e-01 1.016426732e+00 2.119869441e+00 2.2e-01 0.02
2 1.1e+01 5.8e-02 5.4e-02 1.90e-01 1.043572045e+00 1.719748223e+00 5.8e-02 0.02
3 2.7e+00 1.4e-02 7.1e-03 6.75e-01 -1.313553494e+00 -1.105861803e+00 1.4e-02 0.02
4 1.1e+00 5.6e-03 2.2e-03 6.47e-01 -2.213045338e+00 -2.086781847e+00 5.6e-03 0.02
5 5.4e-01 2.8e-03 1.1e-03 4.53e-01 -2.441077288e+00 -2.323250990e+00 2.8e-03 0.02
6 3.0e-01 1.6e-03 4.2e-04 5.82e-01 -3.140761913e+00 -3.080213358e+00 1.6e-03 0.02
7 1.0e-01 5.2e-04 1.4e-04 4.80e-01 -3.341212547e+00 -3.280246333e+00 5.2e-04 0.02
8 3.0e-02 1.6e-04 4.0e-05 4.80e-02 -3.365742177e+00 -3.304269096e+00 1.6e-04 0.02
9 1.1e-02 5.6e-05 9.9e-06 3.01e-01 -3.905581952e+00 -3.875427148e+00 5.6e-05 0.02
10 2.8e-03 1.5e-05 4.0e-06 -4.77e-02 -2.901369419e+00 -2.828915983e+00 1.5e-05 0.02
11 1.2e-03 6.5e-06 1.4e-06 1.74e-01 -3.488434699e+00 -3.446145116e+00 6.5e-06 0.02
12 2.5e-04 1.3e-06 2.4e-07 1.19e-01 -3.709951119e+00 -3.675033455e+00 1.3e-06 0.02
13 6.1e-05 3.2e-07 7.1e-08 -4.65e-02 -3.355230046e+00 -3.306323562e+00 3.2e-07 0.02
14 2.0e-05 1.0e-07 1.8e-08 1.28e-01 -3.829572088e+00 -3.798116236e+00 1.0e-07 0.02
15 5.8e-06 2.0e-07 7.7e-09 -1.59e-01 -2.978136135e+00 -2.913928098e+00 3.0e-08 0.02
16 2.9e-06 1.1e-07 3.0e-09 1.87e-01 -3.568737353e+00 -3.530270469e+00 1.5e-08 0.02
17 6.3e-07 1.6e-07 6.0e-10 1.06e-01 -3.725303593e+00 -3.692460247e+00 3.3e-09 0.02
18 1.7e-07 2.9e-06 2.0e-10 -6.94e-02 -3.293392099e+00 -3.244840939e+00 9.0e-10 0.02
19 5.3e-08 4.9e-06 4.9e-11 1.24e-01 -3.727630949e+00 -3.696748865e+00 2.8e-10 0.02
20 1.8e-08 4.6e-05 2.0e-11 -6.23e-02 -3.308400467e+00 -3.263192463e+00 9.4e-11 0.02
21 4.8e-09 5.0e-05 4.2e-12 1.33e-01 -3.608109030e+00 -3.580428548e+00 2.5e-11 0.02
22 1.9e-09 2.8e-04 1.6e-12 1.15e-01 -3.443261515e+00 -3.414882410e+00 9.7e-12 0.02
23 7.2e-10 5.0e-04 4.2e-13 4.87e-01 -3.727091378e+00 -3.714820336e+00 3.8e-12 0.03
24 4.1e-10 1.1e-03 2.1e-13 5.74e-01 -3.748111613e+00 -3.738324445e+00 2.1e-12 0.03
25 1.6e-10 2.7e-04 4.7e-14 9.04e-01 -3.880050524e+00 -3.876592797e+00 8.0e-13 0.03
26 1.0e-10 1.8e-04 2.5e-14 9.81e-01 -3.921679157e+00 -3.919286353e+00 5.2e-13 0.03
27 6.1e-11 1.1e-04 1.2e-14 1.04e+00 -3.943008660e+00 -3.941531648e+00 3.1e-13 0.03
28 3.5e-11 5.8e-05 5.4e-15 8.79e-01 -3.974124015e+00 -3.973124382e+00 1.7e-13 0.03
29 2.4e-11 2.6e-05 1.5e-15 9.56e-01 -3.987607328e+00 -3.987155293e+00 6.9e-14 0.03
30 8.6e-12 7.4e-06 3.2e-16 7.81e-01 -4.004417659e+00 -4.004203926e+00 2.2e-14 0.03
31 3.0e-11 2.3e-04 9.2e-17 7.07e-01 -4.010629989e+00 -4.010505429e+00 8.3e-15 0.03
32 3.0e-11 2.3e-04 9.2e-17 1.06e+00 -4.010631766e+00 -4.010507238e+00 8.2e-15 0.03
33 3.0e-11 2.3e-04 9.2e-17 6.27e-01 -4.010633338e+00 -4.010508829e+00 8.2e-15 0.03
34 3.0e-11 2.3e-04 9.2e-17 7.82e-01 -4.010633338e+00 -4.010508829e+00 8.2e-15 0.05
35 3.0e-11 2.4e-04 9.2e-17 1.01e+00 -4.010636920e+00 -4.010512469e+00 8.2e-15 0.05
36 3.0e-11 2.4e-04 9.2e-17 9.74e-01 -4.010636920e+00 -4.010512469e+00 8.2e-15 0.05
37 2.9e-11 2.2e-04 8.4e-17 1.02e+00 -4.011126808e+00 -4.011009641e+00 7.9e-15 0.05
38 2.7e-11 5.0e-05 2.9e-17 1.02e+00 -4.015284422e+00 -4.015226180e+00 4.0e-15 0.05
39 2.7e-11 5.0e-05 2.9e-17 1.01e+00 -4.015284422e+00 -4.015226180e+00 4.0e-15 0.05
40 2.4e-11 4.3e-05 2.4e-17 1.00e+00 -4.016225714e+00 -4.016174821e+00 3.7e-15 0.05
41 1.1e-11 3.0e-05 7.7e-18 1.00e+00 -4.019497974e+00 -4.019473670e+00 1.9e-15 0.05
42 1.1e-11 2.4e-05 5.8e-18 1.00e+00 -4.020281258e+00 -4.020260830e+00 1.7e-15 0.05
43 5.8e-12 4.8e-05 1.8e-18 1.00e+00 -4.022360485e+00 -4.022350656e+00 8.4e-16 0.05
44 6.6e-12 1.5e-04 7.4e-19 1.00e+00 -4.023461241e+00 -4.023455685e+00 4.8e-16 0.06
45 6.6e-12 1.5e-04 7.4e-19 1.00e+00 -4.023461241e+00 -4.023455685e+00 4.8e-16 0.06
46 6.6e-12 1.5e-04 7.4e-19 1.00e+00 -4.023461241e+00 -4.023455685e+00 4.8e-16 0.06
Optimizer terminated. Time: 0.06

Interior-point solution summary
Problem status : ILL_POSED
Solution status : DUAL_ILLPOSED_CER
Primal. obj: -3.2480449319e-05 nrm: 2e+02 Viol. con: 2e-03 var: 3e-16 barvar: 0e+00 cones: 0e+00
Optimizer summary
Optimizer - time: 0.06
Interior-point - iterations : 47 time: 0.06
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00


Status: Failed
Optimal value (cvx_optval): NaN

  1. Per the Mosek warning messages, look for near zero (small magnitude) non-zero numbers in input data. if they are “junk” values which really should be exactly zero, then make them exactly zero, i.e., eliminate them. If they are “legitimately” non-zero, improve the numerical scaling of your problem by changing units, or something, so that all non-zero input data is within a small number of orders of magnitude of 1,

  2. Follow the advice in
    https://www.blogger.com/blogger.g?blogID=2124323532937076865#overview The MOSEK blog: Using MOSEK with CVX
    and you will be using CVX 2.2.2 with the latest version of Mosek (which might be more numerically robust than 9.1.9).

That may or may not resolve the issue. If it does not, your optimization model may need improvement. Because it’s not clear to me whether there may have been a preceding line of output indicating whether CVX provided the dual to the solver, I don 't know whether the Mosek output log reflects ill-posedness in your primal problem or in its dual.

Thanks for your reply.Here are my codes
[NT, K] = size(H);
cvx_begin
cvx_solver mosek

variable Wc(NT, NT) complex hermitian semidefinite
Wp = cell(K, 1);
for k = 1:K
Wp{k} = hermitian_semidefinite(NT);
end
expression W_tide
W_tide = Wc;
for k = 1:K
W_tide = W_tide+Wp{k};
end
variable t
variable r(K) nonnegative
variable alpha_p(K) nonnegative
variable beta_p(K)
variable alpha_c(K) nonnegative
variable beta_c(K)
expression const_p(K)
for k = 1:K
const_p(k) = log(1+1/((alpha_p_old(k)*beta_p_old(k))))/log(2);
end
expression first_order_alpha_p(K)
for k = 1:K
first_order_alpha_p(k) = -(alpha_p(k)-alpha_p_old(k))/((alpha_p_old(k)+(alpha_p_old(k))^2 * (beta_p_old(k)))*log(2));
% first_order_alpha_p(k) = -(alpha_p(k)-alpha_p_old(k))*inv_pos(((alpha_p_old(k)+((alpha_p_old(k))^2) * (beta_p_old(k)))*log(2)));
end
expression first_order_beta_p(K)
for k = 1:K
first_order_beta_p(k) =-(beta_p(k)-beta_p_old(k))/((beta_p_old(k)+(beta_p_old(k)^2) *(alpha_p_old(k)))log(2));
% first_order_beta_p(k) =-(beta_p(k)-beta_p_old(k))inv_pos(((beta_p_old(k)+(beta_p_old(k)^2)(alpha_p_old(k)))log(2)));
end
expression const_c(K)
for k = 1:K
const_c(k) = log(1+(1/(alpha_c_old(k)beta_c_old(k))))/log(2);
% const_c(k) = log(1+inv_pos((alpha_c_old(k)beta_c_old(k))))/log(2);
end
expression first_order_alpha_c(K)
for k = 1:K
first_order_alpha_c(k) = -(alpha_c(k)-alpha_c_old(k))/((alpha_c_old(k)+(alpha_c_old(k))^2 * (beta_c_old(k)))log(2));
% first_order_alpha_c(k) = -(alpha_c(k)-alpha_c_old(k))inv_pos(((alpha_c_old(k)+(alpha_c_old(k))^2 * (beta_c_old(k)))log(2)));
end
expression first_order_beta_c(K)
for k = 1:K
first_order_beta_c(k) =-(beta_c(k)-beta_c_old(k))/((beta_c_old(k)+(beta_c_old(k)^2) (alpha_c_old(k)))log(2));
% first_order_beta_c(k) =-(beta_c(k)-beta_c_old(k))inv_pos(((beta_c_old(k)+(beta_c_old(k)^2) (alpha_c_old(k)))log(2)));
end
maximize(t);
subject to
trace(W_tide) <= P_mW;
for k = 1:K
% r(k)+log(1+(1/(alpha_p(k)beta_p(k))))/log(2) >=t;
r(k)+const_p(k)+ first_order_alpha_p(k)+first_order_beta_p(k) >= t;
end
for k = 1:K
hk = H(:,k);
inv_pos(alpha_p(k)) <= real(trace(Wp{k}
(hk
hk’)));
% (alpha_p(k)) >=inv_pos(real(trace(Wp{k}
(hk
hk’))));
% alpha_p(k) >=1/trace(Wp{k}
(hk
hk’));
end
for k = 1:K
hk = H(:,k);
beta_p(k) >=real(trace((W_tide-Wc-Wp{k})
(hk
hk’))+sigma2_mW)+1e-8;
end
for k = 1:K
% sum(r) <=log(1+(1/(alpha_c(k)beta_c(k))))/log(2);
sum(r) <=const_c(k)+first_order_alpha_c(k)+first_order_beta_c(k);
end
% sum(r) <=min(const_c+first_order_alpha_c+first_order_beta_c);
for k = 1:K
hk = H(:,k);
% (alpha_c(k)) >= inv_pos(real(trace(Wc
(hk
hk’))));
inv_pos(alpha_c(k)) <= real(trace(Wc
(hk
hk’)));
end
for k = 1:K
hk = H(:,k);
beta_c(k) >=real(trace((W_tide-Wc)
(hk
hk’))+sigma2_mW);
end

cvx_end
In my model,the channel matrix 's order of magnitude is 1e-6,I don’t know if it’s the channel matrix that caused the input to be a very small number.

If i change the code
variable t
variable r(K) nonnegative
variable alpha_p(K) nonnegative
variable beta_p(K) nonnegative
variable alpha_c(K) nonnegative
variable beta_c(K) nonnegative
expression const_p(K) ,the problem can be “solved”,but in my constraint
beta_p(k) >=real(trace((W_tide-Wc-Wp{k})(hkhk’))+sigma2_mW)+1e-8
beta_c(k) >=real(trace((W_tide-Wc)(hkhk’))+sigma2_mW);Here RHS is always greater than 0 ,so why variable beta_p(K) nonnegative variable beta_c(K) nonnegative can lead to different answer?

You haven’t told us how the answers differ. if there is not a numerically significant difference in the optimal objective value, then it may be that the optimal solution is not unique, or is very sensitive to small changes in the problem.

But until you fix the numerical scaling and get rid of the Mosek warning messages, it may be that none of the solutions are reliable. So do that first.

Ok thanks for your reply.i have a new problem.When cvx got ‘solved’,i check the variable and constraint
beta_p(k)-real(trace((W_tide-Wc-Wp{k})(hkhk’))+sigma2_mW);
beta_p(1) is -2.5818e-05 and RHS is 1.7269e-05, so
beta_p(k)-real(trace((W_tide-Wc-Wp{k})(hkhk’))+sigma2_mW)>=0 is not satisfied,and
beta_p(k)-real(trace((W_tide-Wc-Wp{k})(hkhk’))+sigma2_mW) =-4.3087e-05. So Why cvx_status is ‘solved’,but can’t satisfy constraint? Looking forward to your reply.
Calling Mosek 9.1.9: 142 variables, 33 equality constraints

MOSEK Version 9.1.9 (Build date: 2019-11-21 11:34:40)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Windows/64-X86

MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (29) of matrix ‘A’.
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 33
Cones : 8
Scalar variables : 62
Matrix variables : 5
Integer variables : 0

Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries : 1 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 33
Cones : 8
Scalar variables : 62
Matrix variables : 5
Integer variables : 0

Optimizer - threads : 6
Optimizer - solved problem : the primal
Optimizer - Constraints : 17
Optimizer - Cones : 9
Optimizer - Scalar variables : 47 conic : 26
Optimizer - Semi-definite variables: 5 scalarized : 180
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 102 after factor : 111
Factor - dense dim. : 0 flops : 6.39e+04
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 9.6e+02 1.0e+00 1.0e+00 0.00e+00 0.000000000e+00 0.000000000e+00 1.0e+00 0.00
1 2.2e+02 2.3e-01 4.3e-01 -9.21e-01 4.620417808e+00 7.357944996e+00 2.3e-01 0.00
2 7.0e+00 7.3e-03 2.7e-02 -6.89e-01 3.090323796e+01 4.481449914e+01 7.3e-03 0.00
3 1.6e+00 1.6e-03 2.5e-03 9.96e-01 1.074170893e+01 1.301447631e+01 1.6e-03 0.00
4 4.6e-01 4.7e-04 4.2e-04 7.67e-01 8.028955232e-01 1.574858420e+00 4.7e-04 0.00
5 1.8e-01 1.9e-04 1.3e-04 5.99e-01 -1.631989912e+00 -1.153790388e+00 1.9e-04 0.00
6 9.3e-02 9.7e-05 4.8e-05 5.49e-01 -3.753347154e+00 -3.514933359e+00 9.7e-05 0.00
7 2.8e-02 2.9e-05 1.4e-05 4.28e-01 -3.843111008e+00 -3.628041125e+00 2.9e-05 0.00
8 9.1e-03 9.5e-06 2.7e-06 2.47e-01 -5.419066077e+00 -5.340024014e+00 9.5e-06 0.00
9 2.3e-03 2.4e-06 9.2e-07 1.61e-02 -4.039795622e+00 -3.896839995e+00 2.4e-06 0.00
10 6.3e-04 6.6e-07 1.7e-07 1.53e-01 -5.300104821e+00 -5.235527713e+00 6.6e-07 0.00
11 1.6e-04 1.7e-07 5.1e-08 -3.61e-03 -4.631678489e+00 -4.542434520e+00 1.7e-07 0.00
12 4.8e-05 5.5e-08 1.2e-08 9.74e-02 -5.280006442e+00 -5.225551817e+00 5.0e-08 0.00
13 1.6e-05 1.4e-07 4.3e-09 3.95e-02 -4.890279145e+00 -4.826686638e+00 1.7e-08 0.00
14 5.6e-06 3.3e-07 1.1e-09 2.14e-01 -5.331015859e+00 -5.295277000e+00 5.8e-09 0.00
15 2.2e-06 9.3e-07 4.9e-10 2.45e-02 -4.680981775e+00 -4.632377072e+00 2.2e-09 0.00
16 6.4e-07 1.7e-06 1.0e-10 3.24e-01 -4.826236926e+00 -4.801687455e+00 6.6e-10 0.02
17 2.5e-07 3.2e-05 3.3e-11 3.05e-01 -4.906337817e+00 -4.890319104e+00 2.6e-10 0.02
18 1.6e-07 7.4e-05 2.1e-11 3.16e-01 -4.821606368e+00 -4.805539364e+00 1.6e-10 0.02
19 7.1e-08 3.2e-05 6.3e-12 6.39e-01 -5.079531938e+00 -5.072297170e+00 7.4e-11 0.02
20 3.6e-08 2.4e-04 3.5e-12 4.44e-01 -4.955853765e+00 -4.946963182e+00 3.7e-11 0.02
21 1.2e-08 9.5e-06 6.3e-13 5.67e-01 -5.086347795e+00 -5.083735039e+00 1.2e-11 0.02
22 3.0e-09 2.8e-04 1.1e-13 6.04e-01 -5.168197203e+00 -5.166892018e+00 3.2e-12 0.02
23 1.2e-09 2.2e-04 3.8e-14 5.07e-01 -5.212448644e+00 -5.211492867e+00 1.2e-12 0.02
24 4.8e-10 1.4e-03 8.7e-15 6.98e-01 -5.232694144e+00 -5.232245460e+00 4.1e-13 0.02
25 2.4e-10 5.3e-04 3.9e-15 4.06e-01 -5.249177132e+00 -5.248731452e+00 1.9e-13 0.02
26 7.3e-11 1.7e-04 7.5e-16 7.33e-01 -5.262237884e+00 -5.262054096e+00 5.5e-14 0.02
27 3.0e-11 7.6e-05 3.1e-16 3.93e-01 -5.269806493e+00 -5.269622088e+00 2.3e-14 0.02
28 3.0e-11 7.6e-05 3.1e-16 6.98e-01 -5.269806493e+00 -5.269622088e+00 2.3e-14 0.02
29 3.9e-11 4.1e-05 7.4e-17 8.32e-01 -5.275684468e+00 -5.275606938e+00 8.2e-15 0.02
30 3.9e-11 4.1e-05 7.4e-17 5.51e-01 -5.275684468e+00 -5.275606938e+00 8.2e-15 0.02
31 4.0e-11 5.2e-05 4.8e-17 1.00e+00 -5.277997276e+00 -5.277938693e+00 6.5e-15 0.02
32 1.0e-10 9.5e-04 1.3e-17 1.00e+00 -5.281762144e+00 -5.281736424e+00 2.9e-15 0.02
33 1.0e-10 9.5e-04 1.3e-17 1.00e+00 -5.281762144e+00 -5.281736424e+00 2.9e-15 0.02
34 1.0e-10 9.5e-04 1.3e-17 1.00e+00 -5.281762144e+00 -5.281736424e+00 2.9e-15 0.02
Optimizer terminated. Time: 0.02

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -5.2817621444e+00 nrm: 3e+07 Viol. con: 3e-07 var: 3e-10 barvar: 0e+00 cones: 0e+00
Dual. obj: -5.2817364236e+00 nrm: 5e+05 Viol. con: 0e+00 var: 3e-11 barvar: 6e-17 cones: 0e+00
Optimizer summary
Optimizer - time: 0.02
Interior-point - iterations : 35 time: 0.02
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00


Status: Solved
Optimal value (cvx_optval): +5.28176

There is still a Mosek warning message. You have not adequately addressed that. Perhaps it is due to the 1e-8 in the constraint on beta_p(k)? Try changing that to 1e-5.

It appears that the constraint violation may be due to feasibility tolerance. You have to keep in mind that Mosek solves within feasibility tolerance for the constraints it is provided. However, CVX does transformations from the constraints you provide it to produce the constraints it sends to the solver (Mosek). When the transformation is reversed by CVX after solution by the solver, a constraint violation could become somewhat larger in terms of the original constraint provided to CVX. And the near zero input data might potentially exacerbate that.

Thanks for your reply! My real constraint is
beta_p(k)-real(trace((W_tide-Wc-Wp{k})(hkhk’))+sigma2_mW)>=0,and sigma2_mW is the power of noise,sigma2_mW=1e-8,that is a classical value.I change to
beta_p(k)-real(trace((W_tide-Wc-Wp{k})(hkhk’))+sigma2_mW)>=1e-8 in order to let beta_p(k)>=real(trace((W_tide-Wc-Wp{k})(hkhk’))+sigma2_mW) but it still can’t work.If **beta_p(k)**got a negative value,and i use sca next iteration *const_p(k) = log(1+1/((alpha_p_old(k)beta_p_old(k))))/log(2) will be wrong.And i will address the Mosek warning.

maybe i need to scaling the matrix H

Yes, try to get the elements of `H’ to be close to magnitude 1.

I think that you need adequate scaling of everything else so that 1e-5, or maybe 1e-6 is adequate to ensure you get the strict nonnegativity you need in that constraint… Your other option is to adjust the solution from CVX prior to feeding them into your next iteration.

If you use SCA. there may be a risk that even if the 1st SCA iteration is well-scaled, some later iteration may not be. See