The cvx status is infeasible, but i'm sure there are feasible solutions for the considered problem

The considered problem is a joint power and beam allocation problem for MIMO-NOMA system.
G and H_ are complex matrix with size of (Nt-N+1,Nt-N+1,N) and (Nt-N+1,Nt-N+1,N, N), respectively. The main code are as below:

cvx_begin sdp
% cvx_precision high
cvx_solver sedumi
variables rou(N) t(N) a(N)

``````       for i = 1:N
eval(['variable Q',num2str(i),'(Nt-N+1,Nt-N+1) symmetric']);
end

expression r
r = 0;
for i = 1:N
r = r+log(1+rou(i))/log(2);
end
maximize( r )
subject to:
for i = 1:N
eval(['det_rootn([a(i),t(i);t(i),trace(G(:,:,i)*Q',num2str(i),')])>=0;']);
t_(i)^2+2*t_(i)*(t(i)-t_(i))-rou(i)>=0;
eval(['real(2/(gama+1)*(trace(G(:,:,i)*Q',num2str(i),')-gama))-pow_abs(trace(G(:,:,i)*Q',num2str(i),')/c(i),2)-pow_abs(a(i)*c(i),2)>=0;']);

eval(['Q',num2str(i),' == semidefinite(Nt-N+1);']);
rou(i)>=0;
% a(i)>=0;
0.1-a(i)>=0;
end
expression z(1,N)

for k = 1:N
z(k) = 0;
for i = 1:N
if i~=k
eval(['z(k)= z(k) + trace(H_(:,:,i,k)*Q',num2str(i),');']);

end
end
eval(['real(2/(gama+1)*(trace(H_(:,:,k,k)*Q',num2str(k),')-gama*z(k)-gama))-pow_abs(trace(H_(:,:,k,k)*Q',num2str(k),')/d(k),2)-pow_abs(a(k)*d(k),2)>=0; ']);

end
expression pp
pp = 0;
for i = 1: N
eval([' pp = pp + trace(Q',num2str(i),');']);
end
P-pp>=0;
cvx_end``````

The problem can be solved when the two long restrictions containing the ‘real’ term are omitted. However, these two constraints denote SINR conditions for decoding signals of multiplexed users. Moreover, the solutions while neglecting the two constraints is a feasible solution for the considered problem, so i’m sure the problem is feasible.

Di you have a reproducible example, complete with all input data, showing that CVX/solver declares the problem infeasible, and for which you have a solution for which you show feasibility?