Why is the equal sign not satisfied sometimes in

```
F(m,k)=((X(m)-W(k,1))^2+(Y(m)-W(k,2))^2)；
```

```
U(m,1)=((X(m)-r(1))^2+(Y(m)-r(2))^2);
```

```
delta(m,1)=(X(m+1)-X(m))^2+(Y(m+1)-Y(m))^2;
```

The entire program is shown as

```
cvx_begin
variables X(M+N+1,1) Y(M+N+1,1) t f(M+N,1)
expressions F U delta EH1 EH2 EE1 EE2 EE3 EE4 R_BB1 R_BB2 R_FF1 R_FF2
maximize t
subject to
%F
for m=1:M
for k=1:K
F(m,k)=((X(m)-W(k,1))^2+(Y(m)-W(k,2))^2);
end
end
%F0
for m=1:M
for k=1:K
F0(m,k)=(X0(m)-W(k,1))^2+(Y0(m)-W(k,2))^2;
end
end
%U
for m=M+1:M+N
U(m,1)=((X(m)-r(1))^2+(Y(m)-r(2))^2);
end
%U0
for m=M+1:M+N
U0(m,1)=(X0(m)-r(1))^2+(Y0(m)-r(2))^2;
end
%delta0^2
for m=1:M+N
delta0(m,1)=(X0(m+1)-X0(m))^2+(Y0(m+1)-Y0(m))^2;
end
%delta^2
for m=1:M+N
delta(m,1)=(X(m+1)-X(m))^2+(Y(m+1)-Y(m))^2;
end
%C5
delta<=(min(delta_max,T.*Vmax)).^2;
%C6
for k=1:K
EH1=yita*P0*beita0*(T(1:M,1)-Z(:,k))./(H^2+F0(:,k));
EH2=-yita*P0*beita0*(T(1:M,1)-Z(:,k)).*(F(:,k)-F0(:,k))./((H^2+F0(:,k)).^2);
sum(Pc*tao(:,k))<=sum(EH1+EH2);
end
%C7
EE1=sum(P0*T);
EE2=P1*sum((T+3*delta./((Utip^2)*T)));
EE3=sum(P2*f);
EE4=(1/2)*d0*rou*s*A*sum(pow_pos(delta,3/2)./(T.^2));
EE1+EE2+EE3+EE4<=E_total;
%C8
X(1)==q0(1);Y(1)==q0(2);X(M+N+1)==qI(1);Y(M+N+1)==qI(2);
%C9
R_BB1=sum(sum(B*tao.*log(1+P0.*Z*beita0*beita0./(tao*B*N0.*(H^2+F0).^2))/log(2)));
R_BB2=sum(sum(-2*B*tao.*(F-F0)./((1+(tao*B*N0.*(H^2+F0).^2)./(P0*Z*beita0*beita0)).*(H^2+F0)*log(2))));
R_BB1+R_BB2>=t;
%C10
R_FF1=sum(B*T(M+1:M+N,1).*log(1+P0*beita0./(B*N0*(H^2+U0(M+1:M+N,1))))/log(2));
R_FF2=sum(-B*T(M+1:M+N,1).*(U(M+1:M+N,1)-U0(M+1:M+N,1))./((1+(B*N0*(H^2+U0(M+1:M+N,1)))./(P0*beita0)).*(H^2+U0(M+1:M+N,1))*log(2)));
R_FF1+R_FF2>=t;
%C11
(T.^4).*pow_pos(inv_pos(f),2)<=(f0).^2+2*(f0).*(f-f0)-delta0/(v0^2)+2/(v0^2)*(X0(2:M+N+1,1)-X0(1:M+N,1)).*(X(2:M+N+1,1)-X(1:M+N,1))+(Y0(2:M+N+1,1)-Y0(1:M+N,1)).*(Y(2:M+N+1,1)-Y(1:M+N,1));
cvx_end
```

The above program is to solve the following optimization problem,

To deal with the non-convex terms in C6, C9, and C10, SCA technique is applied, i.e.,