Hi,
Thanks a lot for your reply. As the norm is not the only term, I cannot remove the power.
Unfortunately, this optimization problem is a piece of multiple problems and sharing all is not possible but I am adding the function with a sample input, as well as the output below (due to limitation of the length in message, the last iteration is added). after the Successive solving of the problem, I and I_n are not equal (or close considering the Z). Please let me know if this is useful or any other information is needed.
I_n=[0.0430 0.0887 0.0004 0.0614 0.0599 0.0634 0.0201 0.0016 0.0010 0.0225 0.0001 0.0778 0.0730 0.0894 0.0005 0.0043
0.0050 0.0288 0.0397 0.0398 0.0001 0.0775 0.0750 0.0013 0.0009 0.0256 0.0025 0.0079 0.0009 0.0673 0.0027 0.0119
0.0624 0.0252 0.0050 0.0082 0.0057 0.0669 0.0687 0.0443 0.0013 0.0421 0.0680 0.0390 0.0011 0.0457 0.0135 0.0815
0.0064 0.0011 0.0011 0.0087 0.0106 0.0340 0.0002 0.0002 0.0023 0.0118 0.0001 0.0220 0.0083 0.0139 0.0010 0.0002];
S_n=[0.0000 0.0839 0.0000 0.1829 0.1886 0.0320 0.0000 0.0000 0.0000 0.0000 0.0000 0.0680 0.1782 0.0622 0.0000 0.0000
0.0000 0.1992 0.0000 0.1943 0.0000 0.0910 0.1031 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1998
0.1302 0.0000 0.0000 0.0000 0.0000 0.0001 0.0695 0.0000 0.0000 0.0000 0.0356 0.1966 0.0000 0.1943 0.0000 0.1518
0.0000 0.0000 0.0000 0.1966 0.1937 0.0002 0.0000 0.0000 0.0000 0.1995 0.0000 0.0000 0.1997 0.0000 0.0000 0.0000];
N_B=4;
N_u=16;
lambda_I=0.1ones(N_B,N_u);
lambda_S=0.1ones(N_B,N_u);
Z_I=0.001ones(N_B,N_u);
Z_S=0.001ones(N_B,N_u);
xi=ones(N_u,1);
Prev=-10000;
iter=1;
d=10;
P_N=1e-3;
ro=200;
while iter <=10 & d >=0.005
cvx_begin
variable I(N_B,N_u)
variable S(N_B,N_u)
variable alfa(N_u)
variable bet(N_u)
variable tu(N_u)
minimize(-sum(log(tu))+(ro/2)*(square_pos(norm(I_n-I+Z_I,‘fro’))+square_pos(norm(S_n-S+Z_S,‘fro’)))-sum(sum(lambda_I.*I+lambda_S.*S)))
subject to
exp(tu)<=1+alfa;
I>=0;
alfa>=0;
bet>=sum(I,1)'+P_N;
(0.5./xi).*alfa.^2+(xi/2).*(bet.^2)<=sum(S,1)';
cvx_end
xi=alfa./bet;
d=abs((cvx_optval-Prev)/Prev);
Prev=cvx_optval;
iter=iter+1;
I_Final=I;
S_Final=S;
end
test
…
Calling Mosek 9.1.9: 444 variables, 212 equality constraints
MOSEK Version 9.1.9 (Build date: 2019-11-21 11:34:40)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Windows/64-X86
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 212
Cones : 68
Scalar variables : 444
Matrix variables : 0
Integer variables : 0
Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries : 1 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 212
Cones : 68
Scalar variables : 444
Matrix variables : 0
Integer variables : 0
Optimizer - threads : 4
Optimizer - solved problem : the primal
Optimizer - Constraints : 66
Optimizer - Cones : 68
Optimizer - Scalar variables : 315 conic : 281
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 386 after factor : 551
Factor - dense dim. : 0 flops : 1.03e+04
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 2.1e+00 1.4e+02 2.6e+02 0.00e+00 2.132454144e+02 -4.276326405e+01 1.0e+00 0.00
1 8.0e-01 5.3e+01 1.6e+02 -9.86e-01 8.504700375e+01 -1.639339796e+02 3.8e-01 0.00
2 6.2e-01 4.1e+01 1.0e+02 -6.80e-01 7.788094326e+01 -1.130425930e+02 2.9e-01 0.02
3 2.3e-01 1.5e+01 1.8e+01 1.72e-01 4.916216330e+01 -2.360578274e+01 1.1e-01 0.02
4 4.7e-02 3.1e+00 1.8e+00 6.76e-01 9.185996047e+00 -7.685565133e+00 2.2e-02 0.02
5 1.6e-02 1.0e+00 4.7e-01 7.96e-01 -1.993730454e+00 -8.511403568e+00 7.3e-03 0.02
6 6.2e-03 4.1e-01 1.6e-01 6.49e-01 -5.895791740e+00 -9.160217316e+00 2.9e-03 0.02
7 2.2e-03 1.5e-01 4.6e-02 5.52e-01 -7.895582956e+00 -9.451406975e+00 1.1e-03 0.02
8 9.4e-04 6.2e-02 1.7e-02 4.65e-01 -8.852193004e+00 -9.726112838e+00 4.4e-04 0.02
9 5.2e-04 3.4e-02 8.9e-03 3.48e-01 -9.131017951e+00 -9.759845094e+00 2.4e-04 0.02
10 1.7e-04 1.1e-02 2.5e-03 3.65e-01 -9.533015371e+00 -9.826394361e+00 8.0e-05 0.02
11 8.6e-05 5.7e-03 1.2e-03 3.51e-01 -9.529440696e+00 -9.723780130e+00 4.0e-05 0.02
12 3.7e-05 2.4e-03 4.2e-04 4.16e-01 -9.591903195e+00 -9.698486482e+00 1.7e-05 0.02
13 2.4e-05 1.6e-03 2.6e-04 4.08e-01 -9.581909133e+00 -9.664053325e+00 1.1e-05 0.02
14 8.1e-06 5.4e-04 7.1e-05 4.09e-01 -9.661269358e+00 -9.697637216e+00 3.8e-06 0.02
15 4.8e-06 3.2e-04 4.0e-05 4.33e-01 -9.714139249e+00 -9.740061726e+00 2.3e-06 0.02
16 1.5e-06 9.9e-05 1.0e-05 4.13e-01 -9.881115448e+00 -9.891423656e+00 7.0e-07 0.02
17 6.0e-07 4.0e-05 3.6e-06 4.68e-01 -1.000460190e+01 -1.000960688e+01 2.8e-07 0.02
18 2.4e-07 1.6e-05 1.4e-06 2.76e-01 -1.021110864e+01 -1.021342324e+01 1.1e-07 0.02
19 1.6e-07 1.0e-05 7.9e-07 4.40e-01 -1.025406034e+01 -1.025566272e+01 7.4e-08 0.02
20 6.0e-08 4.0e-06 3.0e-07 2.01e-01 -1.042443462e+01 -1.042477107e+01 2.8e-08 0.02
21 3.1e-08 2.0e-06 1.6e-07 1.84e-01 -1.049379724e+01 -1.049357460e+01 1.5e-08 0.02
22 1.8e-08 1.2e-06 9.0e-08 1.31e-01 -1.045825028e+01 -1.045768716e+01 8.4e-09 0.02
23 9.5e-09 6.3e-07 5.1e-08 1.24e-02 -1.031684144e+01 -1.031584184e+01 4.5e-09 0.02
24 4.1e-09 2.7e-07 2.2e-08 5.87e-03 -1.013826359e+01 -1.013689705e+01 1.9e-09 0.02
25 1.5e-09 1.0e-07 7.9e-09 5.63e-02 -9.946786842e+00 -9.945344805e+00 7.3e-10 0.02
26 7.6e-10 5.1e-08 3.7e-09 1.98e-01 -9.807351195e+00 -9.805990478e+00 3.6e-10 0.02
27 3.2e-10 2.2e-08 1.3e-09 3.99e-01 -9.670823490e+00 -9.669875144e+00 1.5e-10 0.02
28 2.2e-10 1.4e-08 7.2e-10 6.36e-01 -9.618937856e+00 -9.618254611e+00 1.0e-10 0.02
29 8.2e-11 1.0e-08 2.1e-10 5.74e-01 -9.532731984e+00 -9.532314258e+00 3.9e-11 0.02
30 3.2e-11 1.2e-08 5.2e-11 8.22e-01 -9.487566261e+00 -9.487385679e+00 1.4e-11 0.02
31 7.6e-12 2.1e-08 2.8e-12 8.89e-01 -9.460079478e+00 -9.460050312e+00 2.0e-12 0.02
32 3.8e-11 8.3e-08 9.4e-14 9.82e-01 -9.455804589e+00 -9.455801541e+00 2.0e-13 0.02
Optimizer terminated. Time: 0.02
Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -9.4558045890e+00 nrm: 4e+03 Viol. con: 3e-05 var: 6e-05 cones: 0e+00
Dual. obj: -9.4558015414e+00 nrm: 2e+05 Viol. con: 0e+00 var: 6e-11 cones: 0e+00
Optimizer summary
Optimizer - time: 0.02
Interior-point - iterations : 32 time: 0.02
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00
Status: Solved
Optimal value (cvx_optval): -9.95315