I was recently solving the norm constraint problem using CVX, but the following error occurred
> clc
> clear
> S=[0 1
> 1 0];
> R=[1 0];
> T=30;
> x1=[-2.10223695603323 -3.78591992632920 -7.17269955056974 -18.6477140679511 -41.6973303472063 -83.9775248787705 -171.991480897492 -349.597102022052 -699.927895858096 -1401.64892366758 -2804.46098955305 -5610.77236359478 -11222.8441395386 -22449.1703286641 -44898.9833630878 -89794.8407299650 -179592.689380526 -359186.773382450 -718374.821910199 -1436748.06696509 -2873496.00051562 -5746985.53438892 -11493961.6330137 -22987923.3966060 -45975851.0972372 -91951699.3265585 -183903401.530448 -367806801.737505 -735613601.046596 -1471227200.40138 -2942454396.37478];
> x11=[-2.10223695603323 -3.78591992632920 -7.17269955056974 -18.6477140679511 -41.6973303472063 -83.9775248787705 -171.991480897492 -349.597102022052 -699.927895858096 -1401.64892366758 -2804.46098955305 -5610.77236359478 -11222.8441395386 -22449.1703286641 -44898.9833630878 -89794.8407299650 -179592.689380526 -359186.773382450 -718374.821910199 -1436748.06696509 -2873496.00051562 -5746985.53438892 -11493961.6330137 -22987923.3966060 -45975851.0972372 -91951699.3265585 -183903401.530448 -367806801.737505 -735613601.046596 -1471227200.40138];
> x12=[-3.78591992632920 -7.17269955056974 -18.6477140679511 -41.6973303472063 -83.9775248787705 -171.991480897492 -349.597102022052 -699.927895858096 -1401.64892366758 -2804.46098955305 -5610.77236359478 -11222.8441395386 -22449.1703286641 -44898.9833630878 -89794.8407299650 -179592.689380526 -359186.773382450 -718374.821910199 -1436748.06696509 -2873496.00051562 -5746985.53438892 -11493961.6330137 -22987923.3966060 -45975851.0972372 -91951699.3265585 -183903401.530448 -367806801.737505 -735613601.046596 -1471227200.40138 -2942454396.37478];
> U1=[0.0839020868032457 0.271850670637684 -1.26028094217183 -1.31612689629908 -0.137268536575792 -1.22896532115407 -1.72581923496823 -0.0428677342217937 -0.434584472240198 -0.410603771339194 -0.506073363949543 -0.219681917094316 -0.930567709270003 -0.251253845566330 1.15390495264716 -1.07309584968435 -0.395734923392060 -0.441914027334909 0.383637720895366 -0.0793911172296072 2.14061528349563 2.93145024266009 0.160664624331637 -1.48647399970287 1.03398849842491 -0.970312982615375 0.495165059700248 0.908498454030357 0.496875690466906 1.65011538655992];
> Y1=[-2.10223695603323 -3.78591992632920 -7.17269955056974 -18.6477140679511 -41.6973303472063 -83.9775248787705 -171.991480897492 -349.597102022052 -699.927895858096 -1401.64892366758 -2804.46098955305 -5610.77236359478 -11222.8441395386 -22449.1703286641 -44898.9833630878 -89794.8407299650 -179592.689380526 -359186.773382450 -718374.821910199 -1436748.06696509 -2873496.00051562 -5746985.53438892 -11493961.6330137 -22987923.3966060 -45975851.0972372 -91951699.3265585 -183903401.530448 -367806801.737505 -735613601.046596 -1471227200.40138 -2942454396.37478];
> X1_1=pinv(x1);
> E11=[U1;x11];
> E11=pinv(E11);
> cvx_begin
> cvx_solver sdpt3
> variable MEN1(1, 2)
> variable TAO1(1, 2)
> variable W1(1, 30)
> minimize (norm((x12-W1)*E11*[TAO1;MEN1]-MEN1*S,F))
> minimize (norm(Y1*X1_1*MEN1-R,F))
> subject to
> W1*W1'<= T*0.5*eye(1);
> cvx_end
The matrix is known except for the three variables defined, F represents the F norm, and the error is as follows
ill usage *
Disciplined convex programming error:
Only scalar quadratic forms can be specified in CVX
.