How to resolve this error?

This is the error occurring while running the program related to sedumi solver:

Warning: Rank deficient, rank = 17, tol = 1.305597e-02.

In sedumi (line 268)
In cvx_run_solver (line 50)
In cvx_sedumi>solve (line 245)
In cvxprob/solve (line 253)
In cvx_end (line 88)
In power_cvx_QoS (line 80)
In joint_power_beam_ee_opt_QoS (line 202)

Please help me in gettinmg out of this error!

Have you tried another solver? Mosek is more numerically robust than SeDuMi, so perhaps might succeed, even though SeDuMi failed(?).

Did SeDuMi actually fail? You show “Warning”, but not a clear indication of whether the solver failed (also an error, or just a warning?), or CVX’s reported status.

Perhaps the input data is numerically bad, such as being poorly scaled. Or perhaps there are redundant constraints.

Because you have not shown us your program, or input data, probably no reader can say exactly why you encountered this or exactly how to remedy it.

Mose solver unable to solve my problem, whereas SeDuMi can able to solve.
Yes, warning message but is is solving the problem and the status is “solved”.
Redundant constraints means?

Example, x + y == 2 and 2*x + 2*y== 4 Or some other kind of non-full-rank situation.

In any event, you haven’t shown us the complete output of solver and CVX for either solver, let alone both. Nor have you shown us your program or input data.

Error using widelen (line 63)
Assertion failed: tR >= 0

Error in wregion (line 150)
[t,wr,w] = widelen(xc,zc,y0c, dx,dz,dy0,0, maxt,pars,K);

Error in sedumi (line 467)
wregion(L,Lden,Lsd,…

Error in cvx_run_solver (line 50)
[ varargout{1:nargout} ] = sfunc( inputs{:} );

Error in cvx_sedumi>solve (line 245)
[ xx, yy, info ] = cvx_run_solver( @sedumi, At, b, c, K, pars, ‘xx’, ‘yy’, ‘info’, settings, 5 );

Error in cvxprob/solve (line 253)
[ x, status, tprec, iters2, y, z ] = shim.solve( [ At, Anew2 ], [ b ; bnew ], c, cones, true, prec, solv.settings, eargs{:} );

Error in cvx_end (line 88)
solve( prob );

Error in power_cvx_QoS (line 80)
cvx_end

Error in joint_power_beam_ee_opt_QoS (line 202)
[P_rand] = power_cvx_QoS(K,P,R_min,P_BS,P_UE,P_RIS,Gamma_t,sigma_sqr_t,sigma_sqr,rho_UE,rho_BS,P_rand,h_theta,g_theta,h_s_i,v,w_k_initial,w_0_initial,y,z);

power_cvx_QoS function is:

% Function related to Uplink transmit power allocation

function [P_rand_updated] = power_cvx_QoS(K,P,R_min,P_BS,P_UE,P_RIS,Gamma_t,sigma_sqr_t,sigma_sqr,…
rho_UE,rho_BS,P_rand,h_theta,g_theta,h_s_i,v,w_k,w_0,y,z)

% Modern optimization solver

%cvx_solver mosek 
cvx_solver SeDuMi
%cvx_solver Gurobi
%cvx_solver SDPT3

% cvx_solver_settings('write', 'dump.ptf')

 cvx_begin quiet

 variable P_opt(K) nonnegative
            
 % Compute final modified objective function for power subproblem (eq.17)
 [obj_power] = objective_power(K,w_k,h_theta,P_opt,g_theta,h_s_i,v,sigma_sqr_t,sigma_sqr,rho_UE,rho_BS,P_BS,P_UE,P_RIS,y,z);
 obj = obj_power;
            
 maximize real(obj)

 subject to
            
 % constraints

 % Modified target sensing constraint (C_1) of problem P3 in (eq.19)

  temp = 0;
  for k = 1:K

     temp = temp + ( norm( w_0'*h_theta(:,k) )^2 )*(P_opt(k));

   end

   Gamma_t*( temp + norm(w_0'*h_s_i*v)^2 + sigma_sqr*( norm(w_0')^2 ) )...
         <= sigma_sqr_t*(norm(w_0'*g_theta*v)^2);

 % Individual Rate constraint (QoS) (eq.18)
            
  for k=1:K

    a2 = (norm(w_k(:,k)'*h_theta(:,k))^2)*P_opt(k);

    b2=zeros(1,1);

    for mm=1:K

       if mm~=k

           b2 =  b2 + (norm(w_k(:,k)'*h_theta(:,mm))^2)*P_opt(mm);
                    %b1(:,k) = b;

       end

     end

     c2(k) = norm(w_k(:,k)'*g_theta*v)^2;
     d2(k) = norm(w_k(:,k)'*h_s_i*v)^2;
     e2(k) = norm(w_k(:,k)')^2 ;

  (2^(R_min)-1)*( b2 + c2(k)*sigma_sqr_t + d2(k) + e2(k)*sigma_sqr)<= a2 ;          

  end
                            
  % Individual Power Constraint C3 in (eq.19)
            
    for k = 1:K

       P_opt(k) <= P;

       P_opt(k) >=0;
          
    end

  cvx_end
 
  % cvx_status

  if strcmp(cvx_status,'Solved') || strcmp(cvx_status, 'Inaccurate/Solved') %|| strcmp(cvx_status,'Failed')

      P_rand_updated = max(P_opt,1e-6);
      %P_rand_updated = P_opt;

  else

      % default value if not optimized
      P_rand_updated = P_rand;   

  end

end

Error occurs at cvx_end in the above function and I am giving minimum power as 1e-6 as power values sometimes assigning with negative values!

And the warning message also related to above function "power_cvx_QoS " as given below and occurs at line 80 (cvx_end):

Warning: Rank deficient, rank = 1, tol = 3.882509e+20.

In sedumi (line 268)
In cvx_run_solver (line 50)
In cvx_sedumi>solve (line 245)
In cvxprob/solve (line 253)
In cvx_end (line 88)
In power_cvx_QoS (line 80)
In joint_power_beam_ee_opt_QoS (line 202)

Please help me in resolving the issue!

Remove the quiet option, so that all solver and CVX output will be displayed. Show us all solver and CVX output for Mosek and SeDuMi.

uccessive approximation method to be employed.
For improved efficiency, SeDuMi is solving the dual problem.
SeDuMi will be called several times to refine the solution.
Original size: 39 variables, 14 equality constraints
1 exponentials add 8 variables, 5 equality constraints

Cones | Errors |
Mov/Act | Centering Exp cone Poly cone | Status
--------±--------------------------------±--------
1/ 1 | 1.870e+00 3.209e-01 0.000e+00 | Solved
1/ 1 | 3.305e-01 8.002e-03 0.000e+00 | Solved
0/ 0 | 0.000e+00 0.000e+00 0.000e+00 | Solved

Status: Solved
Optimal value (cvx_optval): +0.308658

Successive approximation method to be employed.
For improved efficiency, SeDuMi is solving the dual problem.
SeDuMi will be called several times to refine the solution.
Original size: 39 variables, 14 equality constraints
1 exponentials add 8 variables, 5 equality constraints

Cones | Errors |
Mov/Act | Centering Exp cone Poly cone | Status
--------±--------------------------------±--------
1/ 1 | 2.168e+00 4.673e-01 0.000e+00 | Solved
1/ 1 | 4.942e-01 2.074e-02 0.000e+00 | Solved
0/ 0 | 0.000e+00 0.000e+00 0.000e+00 | Solved

Status: Solved
Optimal value (cvx_optval): +0.933202

Successive approximation method to be employed.
For improved efficiency, SeDuMi is solving the dual problem.
SeDuMi will be called several times to refine the solution.
Original size: 39 variables, 14 equality constraints
1 exponentials add 8 variables, 5 equality constraints

Cones | Errors |
Mov/Act | Centering Exp cone Poly cone | Status
--------±--------------------------------±--------
1/ 1 | 2.359e+00 5.751e-01 0.000e+00 | Solved
1/ 1 | 5.930e-01 2.944e-02 0.000e+00 | Solved
0/ 0 | 0.000e+00 0.000e+00 0.000e+00 | Solved

Status: Solved
Optimal value (cvx_optval): +1.05567

Calling Mosek 9.1.9: 628 variables, 308 equality constraints

MOSEK Version 9.1.9 (Build date: 2019-11-21 11:34:40)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Windows/64-X86

MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (55) of matrix ‘A’.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (184) of matrix ‘A’.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (185) of matrix ‘A’.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (327) of matrix ‘A’.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (393) of matrix ‘A’.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (459) of matrix ‘A’.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (525) of matrix ‘A’.
MOSEK warning 57: A large value of 5.1e+10 has been specified in c for variable ‘’ (219).
MOSEK warning 57: A large value of 5.1e+10 has been specified in c for variable ‘’ (225).
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 308
Cones : 96
Scalar variables : 628
Matrix variables : 0
Integer variables : 0

Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries : 2 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 308
Cones : 96
Scalar variables : 628
Matrix variables : 0
Integer variables : 0

Optimizer - threads : 6
Optimizer - solved problem : the primal
Optimizer - Constraints : 128
Optimizer - Cones : 88
Optimizer - Scalar variables : 432 conic : 384
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 1152 after factor : 1152
Factor - dense dim. : 0 flops : 7.79e+04
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 1.3e+00 5.1e+10 7.2e+10 0.00e+00 7.185520739e+10 -2.200000000e+01 1.0e+00 0.00
1 2.3e-01 8.9e+09 3.0e+10 -1.00e+00 7.185392953e+10 -1.758909063e+02 1.8e-01 0.02
2 5.4e-02 2.1e+09 1.5e+10 -1.00e+00 7.185410071e+10 -1.000764905e+03 4.2e-02 0.02
3 1.3e-02 5.1e+08 7.2e+09 -1.00e+00 7.185423893e+10 -4.850419323e+03 1.0e-02 0.02
4 3.1e-03 1.2e+08 3.5e+09 -1.00e+00 7.185422438e+10 -2.196801473e+04 2.4e-03 0.02
5 7.9e-04 3.1e+07 1.8e+09 -1.00e+00 7.185414833e+10 -8.471155581e+04 6.2e-04 0.02
6 2.5e-04 9.9e+06 1.0e+09 -1.00e+00 7.185391340e+10 -2.753995237e+05 2.0e-04 0.02
7 5.9e-05 2.3e+06 4.9e+08 -1.00e+00 7.185276339e+10 -1.162226612e+06 4.6e-05 0.02
8 1.4e-05 5.6e+05 2.4e+08 -1.00e+00 7.184777289e+10 -4.881679960e+06 1.1e-05 0.02
9 3.5e-06 1.4e+05 1.2e+08 -1.00e+00 7.182743928e+10 -1.979756827e+07 2.7e-06 0.02
10 9.2e-07 3.6e+04 6.1e+07 -1.00e+00 7.174994414e+10 -7.642638336e+07 7.2e-07 0.02
11 2.5e-07 9.9e+03 3.2e+07 -9.99e-01 7.147120076e+10 -2.686234898e+08 2.0e-07 0.02
12 6.2e-08 2.4e+03 1.6e+07 -9.97e-01 7.022143982e+10 -1.116284576e+09 4.8e-08 0.02
13 1.5e-08 6.0e+02 7.7e+06 -9.85e-01 6.530085173e+10 -4.296445622e+09 1.2e-08 0.02
14 4.4e-09 1.7e+02 3.8e+06 -9.33e-01 5.099474877e+10 -1.268564185e+10 3.4e-09 0.02
15 1.4e-09 5.6e+01 1.6e+06 -7.27e-01 2.189096220e+10 -2.464956621e+10 1.1e-09 0.02
16 6.0e-10 2.4e+01 4.8e+05 8.69e-02 1.273829065e+10 -1.056537489e+10 4.7e-10 0.02
17 1.7e-10 6.5e+00 7.2e+04 5.79e-01 2.233936332e+09 -4.973420917e+09 1.3e-10 0.02
18 5.7e-11 2.2e+00 1.4e+04 1.03e+00 8.739365499e+08 -1.444589300e+09 4.3e-11 0.02
19 3.5e-11 6.1e-01 2.1e+03 1.05e+00 2.037571134e+08 -4.291634593e+08 1.2e-11 0.02
20 1.2e-11 2.2e-01 4.2e+02 1.10e+00 7.192137364e+07 -1.399514315e+08 4.3e-12 0.02
21 4.7e-12 8.2e-02 1.0e+02 1.05e+00 2.739883375e+07 -5.229227174e+07 1.6e-12 0.02
22 2.1e-12 3.8e-02 3.1e+01 1.04e+00 1.255074742e+07 -2.347401902e+07 7.5e-13 0.02
23 1.0e-12 1.8e-02 1.0e+01 1.04e+00 5.486831259e+06 -1.169438685e+07 3.6e-13 0.02
24 4.1e-13 7.2e-03 2.4e+00 1.08e+00 2.160987417e+06 -4.253352010e+06 1.4e-13 0.02
25 1.3e-13 2.3e-03 4.1e-01 1.08e+00 5.757004070e+05 -1.360428765e+06 4.4e-14 0.03
26 3.4e-14 6.0e-04 5.5e-02 1.06e+00 1.636149324e+05 -3.364902522e+05 1.2e-14 0.03
27 1.1e-14 2.0e-04 1.0e-02 1.06e+00 5.029892638e+04 -1.126466379e+05 4.0e-15 0.03
28 6.3e-15 1.1e-04 4.4e-03 1.07e+00 2.537175979e+04 -6.473493098e+04 2.3e-15 0.03
29 3.1e-15 5.5e-05 1.4e-03 1.05e+00 1.047896338e+04 -3.182318845e+04 1.1e-15 0.03
30 1.6e-15 2.4e-05 4.1e-04 1.05e+00 1.639799163e+03 -1.679936619e+04 4.8e-16 0.03
31 4.2e-16 7.5e-06 7.0e-05 1.03e+00 -2.490455225e+03 -8.120579062e+03 1.5e-16 0.03
32 2.0e-16 2.7e-06 1.5e-05 1.02e+00 -3.932361180e+03 -5.906922609e+03 5.2e-17 0.03
33 1.7e-16 1.8e-06 8.2e-06 1.01e+00 -4.152246365e+03 -5.500345839e+03 3.6e-17 0.03
34 4.8e-17 5.4e-07 1.3e-06 1.01e+00 -4.499376502e+03 -4.900050786e+03 1.1e-17 0.03
35 3.2e-17 2.0e-07 3.0e-07 1.00e+00 -4.595388946e+03 -4.743399653e+03 4.0e-18 0.03
36 2.1e-17 8.4e-08 8.0e-08 1.00e+00 -4.629226120e+03 -4.690970777e+03 1.6e-18 0.03
37 4.0e-18 2.8e-08 1.6e-08 1.00e+00 -4.643341909e+03 -4.664492257e+03 5.7e-19 0.03
38 6.2e-19 1.9e-08 2.6e-09 1.00e+00 -4.649239952e+03 -4.655518212e+03 1.7e-19 0.03
39 4.9e-17 3.4e-08 2.2e-09 1.00e+00 -4.649442508e+03 -4.655124335e+03 1.5e-19 0.03
40 2.3e-17 1.6e-07 2.2e-09 1.00e+00 -4.649489237e+03 -4.655033890e+03 1.5e-19 0.05
41 5.3e-18 3.6e-08 2.3e-10 1.00e+00 -4.650954120e+03 -4.652200409e+03 3.3e-20 0.05
42 6.9e-17 4.3e-08 1.7e-10 1.00e+00 -4.651033507e+03 -4.652050877e+03 2.7e-20 0.05
43 1.7e-17 7.4e-08 1.6e-10 1.00e+00 -4.651041896e+03 -4.652034737e+03 2.7e-20 0.05
44 3.6e-17 2.8e-08 1.2e-10 1.00e+00 -4.651107766e+03 -4.651907980e+03 2.1e-20 0.05
45 5.6e-17 5.9e-08 1.1e-10 1.00e+00 -4.651114592e+03 -4.651894633e+03 2.1e-20 0.05
46 2.8e-17 1.0e-07 8.1e-11 1.00e+00 -4.651168038e+03 -4.651790029e+03 1.7e-20 0.05
47 4.5e-17 2.8e-07 5.3e-12 1.00e+00 -4.651342993e+03 -4.651443450e+03 2.7e-21 0.05
48 4.3e-17 3.8e-07 5.0e-13 1.00e+00 -4.651368152e+03 -4.651389104e+03 5.6e-22 0.05
49 2.3e-17 4.9e-07 2.6e-14 1.00e+00 -4.651374340e+03 -4.651377257e+03 7.8e-23 0.05
50 4.9e-17 8.3e-07 1.7e-14 1.00e+00 -4.651374603e+03 -4.651376825e+03 5.9e-23 0.05
51 3.9e-17 2.6e-07 4.5e-17 1.00e+00 -4.651375424e+03 -4.651375466e+03 1.2e-24 0.05
Optimizer terminated. Time: 0.05

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -4.6513754243e+03 nrm: 8e+05 Viol. con: 2e-08 var: 0e+00 cones: 8e-14
Dual. obj: -4.6513754922e+03 nrm: 5e+10 Viol. con: 0e+00 var: 1e+02 cones: 0e+00
Optimizer summary
Optimizer - time: 0.05
Interior-point - iterations : 51 time: 0.05
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00


Status: Solved
Optimal value (cvx_optval): +4651.38

Calling Mosek 9.1.9: 628 variables, 308 equality constraints

MOSEK Version 9.1.9 (Build date: 2019-11-21 11:34:40)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Windows/64-X86

MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (55) of matrix ‘A’.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (184) of matrix ‘A’.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (185) of matrix ‘A’.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (327) of matrix ‘A’.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (393) of matrix ‘A’.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (459) of matrix ‘A’.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (525) of matrix ‘A’.
MOSEK warning 57: A large value of 6.3e+10 has been specified in c for variable ‘’ (219).
MOSEK warning 57: A large value of 6.3e+10 has been specified in c for variable ‘’ (225).
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 308
Cones : 96
Scalar variables : 628
Matrix variables : 0
Integer variables : 0

Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries : 2 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 308
Cones : 96
Scalar variables : 628
Matrix variables : 0
Integer variables : 0

Optimizer - threads : 6
Optimizer - solved problem : the primal
Optimizer - Constraints : 128
Optimizer - Cones : 88
Optimizer - Scalar variables : 432 conic : 384
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 1152 after factor : 1152
Factor - dense dim. : 0 flops : 7.79e+04
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 1.3e+00 6.3e+10 8.9e+10 0.00e+00 8.860139519e+10 -2.200000000e+01 1.0e+00 0.00
1 2.3e-01 1.1e+10 3.7e+10 -1.00e+00 8.859611395e+10 -1.758905301e+02 1.8e-01 0.00
2 5.4e-02 2.6e+09 1.8e+10 -1.00e+00 8.859684208e+10 -1.000761110e+03 4.2e-02 0.00
3 1.3e-02 6.3e+08 8.9e+09 -1.00e+00 8.859662764e+10 -4.850472283e+03 1.0e-02 0.00
4 3.1e-03 1.5e+08 4.3e+09 -1.00e+00 8.859656952e+10 -2.196584704e+04 2.4e-03 0.00
5 8.2e-04 4.0e+07 2.2e+09 -1.00e+00 8.859649776e+10 -8.173765253e+04 6.4e-04 0.00
6 2.6e-04 1.3e+07 1.3e+09 -1.00e+00 8.859627332e+10 -2.663794567e+05 2.0e-04 0.00
7 6.1e-05 3.0e+06 6.1e+08 -1.00e+00 8.859516537e+10 -1.126575744e+06 4.8e-05 0.00
8 1.5e-05 7.1e+05 3.0e+08 -1.00e+00 8.859033996e+10 -4.733765370e+06 1.1e-05 0.00
9 3.5e-06 1.7e+05 1.5e+08 -1.00e+00 8.857023159e+10 -1.950240663e+07 2.8e-06 0.00
10 9.2e-07 4.5e+04 7.5e+07 -1.00e+00 8.849274199e+10 -7.613498525e+07 7.2e-07 0.00
11 2.6e-07 1.3e+04 4.0e+07 -9.99e-01 8.823008611e+10 -2.578655511e+08 2.0e-07 0.00
12 6.3e-08 3.1e+03 2.0e+07 -9.97e-01 8.700464736e+10 -1.092468948e+09 4.9e-08 0.00
13 1.5e-08 7.5e+02 9.5e+06 -9.88e-01 8.211489742e+10 -4.268936211e+09 1.2e-08 0.00
14 4.4e-09 2.1e+02 4.8e+06 -9.47e-01 6.713571253e+10 -1.325835563e+10 3.4e-09 0.01
15 1.3e-09 6.2e+01 2.0e+06 -7.85e-01 3.008289371e+10 -3.057202883e+10 9.9e-10 0.01
16 5.1e-10 2.5e+01 5.8e+05 -3.13e-02 1.592035257e+10 -1.423180040e+10 4.0e-10 0.01
17 1.6e-10 7.1e+00 9.4e+04 5.61e-01 3.050716404e+09 -6.727920384e+09 1.1e-10 0.01
18 1.3e-10 2.5e+00 1.9e+04 1.02e+00 1.303041063e+09 -2.042237018e+09 4.1e-11 0.01
19 3.4e-11 6.9e-01 2.7e+03 1.05e+00 2.755246270e+08 -5.989914917e+08 1.1e-11 0.01
20 1.2e-11 2.5e-01 5.9e+02 1.10e+00 1.048254736e+08 -2.017786234e+08 4.1e-12 0.01
21 5.2e-12 1.1e-01 1.6e+02 1.05e+00 4.349477112e+07 -8.393115123e+07 1.7e-12 0.01
22 2.6e-12 5.3e-02 5.6e+01 1.04e+00 2.185452047e+07 -3.996675537e+07 8.4e-13 0.01
23 1.2e-12 2.4e-02 1.7e+01 1.04e+00 8.769670733e+06 -1.867472275e+07 3.8e-13 0.01
24 4.0e-13 8.2e-03 3.3e+00 1.07e+00 3.028716242e+06 -6.028433958e+06 1.3e-13 0.01
25 1.2e-13 2.4e-03 5.1e-01 1.08e+00 7.680394986e+05 -1.807032864e+06 3.9e-14 0.01
26 3.3e-14 6.8e-04 7.4e-02 1.06e+00 2.284204346e+05 -4.690192690e+05 1.1e-14 0.01
27 1.0e-14 2.3e-04 1.4e-02 1.05e+00 7.156865342e+04 -1.588616321e+05 3.7e-15 0.01
28 5.6e-15 1.3e-04 5.7e-03 1.07e+00 3.582077647e+04 -8.880558282e+04 2.0e-15 0.01
29 2.1e-15 6.0e-05 1.8e-03 1.05e+00 1.476165110e+04 -4.234283912e+04 9.5e-16 0.01
30 9.6e-16 2.6e-05 5.2e-04 1.05e+00 2.766906394e+03 -2.203895203e+04 4.2e-16 0.01
31 7.8e-16 8.4e-06 9.1e-05 1.03e+00 -2.774259405e+03 -1.048298735e+04 1.3e-16 0.01
32 2.7e-16 3.0e-06 2.0e-05 1.02e+00 -4.727009952e+03 -7.495985876e+03 4.8e-17 0.01
33 1.4e-16 2.6e-06 1.5e-05 1.01e+00 -4.874067804e+03 -7.221804048e+03 4.1e-17 0.03
34 8.2e-17 7.9e-07 2.6e-06 1.01e+00 -5.459503017e+03 -6.173253454e+03 1.3e-17 0.03
35 5.1e-17 5.5e-07 1.5e-06 1.00e+00 -5.547402642e+03 -6.043443535e+03 8.7e-18 0.03
36 1.5e-17 1.7e-07 2.3e-07 1.00e+00 -5.682768159e+03 -5.825239891e+03 2.5e-18 0.03
37 4.9e-17 1.3e-07 4.5e-08 1.00e+00 -5.717113506e+03 -5.765280760e+03 8.5e-19 0.03
38 1.2e-17 5.0e-08 9.3e-09 1.00e+00 -5.729330898e+03 -5.746157595e+03 3.0e-19 0.03
39 2.3e-17 5.5e-08 2.0e-09 1.00e+00 -5.733216936e+03 -5.739357011e+03 1.1e-19 0.03
40 5.6e-17 5.0e-08 1.8e-09 1.00e+00 -5.733400329e+03 -5.739009166e+03 9.9e-20 0.03
41 2.5e-17 5.6e-08 1.7e-09 1.00e+00 -5.733443510e+03 -5.738927972e+03 9.6e-20 0.03
42 4.6e-17 5.5e-08 1.7e-09 1.00e+00 -5.733444833e+03 -5.738925477e+03 9.6e-20 0.03
43 6.0e-17 6.0e-08 1.7e-09 1.00e+00 -5.733446165e+03 -5.738922984e+03 9.6e-20 0.03
44 6.0e-17 6.0e-08 1.7e-09 1.00e+00 -5.733446165e+03 -5.738922984e+03 9.6e-20 0.03
45 6.2e-17 6.0e-08 1.7e-09 1.00e+00 -5.733451504e+03 -5.738913026e+03 9.6e-20 0.05
46 6.2e-17 6.2e-08 1.7e-09 1.00e+00 -5.733452832e+03 -5.738910542e+03 9.6e-20 0.05
47 6.2e-17 6.1e-08 1.7e-09 1.00e+00 -5.733453495e+03 -5.738909300e+03 9.6e-20 0.05
48 6.2e-17 5.6e-08 1.7e-09 1.00e+00 -5.733454150e+03 -5.738908059e+03 9.6e-20 0.05
49 6.2e-17 6.1e-08 1.7e-09 1.00e+00 -5.733455489e+03 -5.738905578e+03 9.6e-20 0.05
50 6.2e-17 5.8e-08 1.7e-09 1.00e+00 -5.733455812e+03 -5.738904958e+03 9.6e-20 0.05
51 6.1e-17 6.2e-08 1.7e-09 1.00e+00 -5.733455979e+03 -5.738904648e+03 9.6e-20 0.05
52 6.2e-17 6.5e-08 1.7e-09 1.00e+00 -5.733456645e+03 -5.738903408e+03 9.6e-20 0.05
53 6.2e-17 6.2e-08 1.7e-09 1.00e+00 -5.733457315e+03 -5.738902168e+03 9.6e-20 0.05
54 6.2e-17 6.2e-08 1.7e-09 1.00e+00 -5.733457315e+03 -5.738902168e+03 9.6e-20 0.05
55 6.0e-17 6.6e-08 1.7e-09 1.00e+00 -5.733472942e+03 -5.738883276e+03 9.5e-20 0.05
56 6.0e-17 6.9e-08 1.7e-09 1.00e+00 -5.733474883e+03 -5.738880929e+03 9.5e-20 0.05
57 6.1e-17 7.6e-08 1.7e-09 1.00e+00 -5.733475375e+03 -5.738880342e+03 9.5e-20 0.06
58 6.2e-17 7.9e-08 1.7e-09 1.00e+00 -5.733475619e+03 -5.738880049e+03 9.5e-20 0.06
59 6.2e-17 7.7e-08 1.7e-09 1.00e+00 -5.733475743e+03 -5.738879902e+03 9.5e-20 0.06
60 6.2e-17 7.7e-08 1.7e-09 1.00e+00 -5.733475743e+03 -5.738879902e+03 9.5e-20 0.06
61 6.2e-17 7.7e-08 1.7e-09 1.00e+00 -5.733475743e+03 -5.738879902e+03 9.5e-20 0.06
Optimizer terminated. Time: 0.06

Interior-point solution summary
Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: -5.7334757431e+03 nrm: 3e+06 Viol. con: 4e-08 var: 0e+00 cones: 0e+00
Dual. obj: -5.7388798602e+03 nrm: 6e+10 Viol. con: 0e+00 var: 5e+01 cones: 0e+00
Optimizer summary
Optimizer - time: 0.06
Interior-point - iterations : 62 time: 0.06
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00


Status: Failed
Optimal value (cvx_optval): NaN

Maybe the Mosek solution is not that bad, although I’m not sure CVX provides access to it. But YALMIP does allow access to the solution of a Mosek Unknown Unknown result.

In any event, did you notice the Mosek warnings about nearly zero elements and large values? Perhaps that is what is causing difficulty for Mosek. You should improve numerical scaling (by better choice of input units) so that all non-zero input data is within a small number of orders of magnitude of 1.

Sure sir!

I have a general question regarding problem solving in the CVX, what will be the reasons for solution becomes failed, infeasible or inaccurate?

Mostly you pointed out that scaling of the input data must be fit to the solver so that there won’t be any problem. Yes, it is true and I got it from 8.2 Addressing numerical issues — MOSEK Optimization Toolbox for MATLAB 10.2.4. (I am trying to understand it , but certain things were unclear to me and I have to apply to my own problem further).

Is there any other possibilities for the problem to be unsolved using cvx???

For example:

Interior-point solution summary
Problem status : ILL_POSED
Solution status : DUAL_ILLPOSED_CER
Primal. obj: 8.4518724610e-07 nrm: 1e+01 Viol. con: 5e-09 var: 0e+00 cones: 0e+00

And the solution status is given below:

Optimizer summary
Optimizer - time: 0.00
Interior-point - iterations : 30 time: 0.00
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00


Status: Failed
Optimal value (cvx_optval): NaN

What is the problem actually? Again it is bad scaling of inputs only according to the above post?
How to resolve it further?

This is the complete propblem status:

Calling Mosek 9.1.9: 34 variables, 14 equality constraints
For improved efficiency, Mosek is solving the dual problem.

MOSEK Version 9.1.9 (Build date: 2019-11-21 11:34:40)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Windows/64-X86

Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 14
Cones : 6
Scalar variables : 34
Matrix variables : 0
Integer variables : 0

Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 4
Eliminator terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries : 2 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 14
Cones : 6
Scalar variables : 34
Matrix variables : 0
Integer variables : 0

Optimizer - threads : 6
Optimizer - solved problem : the primal
Optimizer - Constraints : 6
Optimizer - Cones : 3
Optimizer - Scalar variables : 17 conic : 9
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 17 after factor : 17
Factor - dense dim. : 0 flops : 1.81e+02
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 1.0e+00 1.0e+02 3.8e+00 0.00e+00 2.827838436e+00 -1.387778781e-17 1.0e+00 0.00
1 2.8e-02 2.8e+00 4.8e-01 -9.60e-01 -1.785871971e+01 -1.509693378e-02 2.8e-02 0.00
2 2.9e-03 2.9e-01 3.1e-02 6.31e-02 -7.585264447e+00 -3.277168094e-02 2.9e-03 0.00
3 9.5e-05 9.5e-03 1.9e-04 9.31e-01 -2.856537213e-01 -3.427134712e-02 9.5e-05 0.00
4 1.3e-05 1.3e-03 9.6e-06 9.81e-01 -3.189222372e-02 1.002303806e-03 1.3e-05 0.00
5 3.3e-06 3.3e-04 1.2e-06 9.72e-01 5.815657027e-02 6.623768986e-02 3.3e-06 0.00
6 6.9e-07 6.9e-05 1.3e-07 8.37e-01 7.988572246e-02 8.229005098e-02 6.9e-07 0.00
7 2.8e-07 2.8e-05 4.9e-08 4.55e-01 8.704419748e-02 8.913534233e-02 2.8e-07 0.00
8 6.6e-08 6.6e-06 7.2e-09 6.61e-01 9.207429169e-02 9.286118629e-02 6.6e-08 0.00
9 2.8e-08 2.8e-06 2.8e-09 3.85e-01 9.122214762e-02 9.187424866e-02 2.8e-08 0.00
10 1.1e-08 1.1e-06 8.5e-10 4.54e-01 9.112383923e-02 9.151428518e-02 1.1e-08 0.00
11 6.0e-09 6.0e-07 4.9e-10 2.52e-01 9.003807573e-02 9.049797646e-02 6.0e-09 0.00
12 1.9e-09 1.9e-07 1.4e-10 2.37e-01 8.901275680e-02 8.937784106e-02 1.9e-09 0.00
13 6.7e-10 6.7e-08 3.9e-11 4.29e-01 8.811353927e-02 8.834909592e-02 6.7e-10 0.00
14 3.1e-10 3.1e-08 2.4e-11 -1.39e-01 8.682383871e-02 8.723342290e-02 3.1e-10 0.00
15 8.0e-11 8.0e-09 4.3e-12 2.42e-01 8.512922757e-02 8.532964291e-02 8.0e-11 0.00
16 2.7e-11 2.7e-09 1.9e-12 -5.08e-02 8.321688905e-02 8.354041797e-02 2.7e-11 0.00
17 8.3e-12 8.3e-10 4.8e-13 2.54e-01 8.142512045e-02 8.165372933e-02 8.3e-12 0.00
18 5.5e-12 2.5e-10 2.1e-13 -1.42e-01 7.821993356e-02 7.869248345e-02 2.5e-12 0.00
19 3.4e-12 7.4e-11 5.3e-14 2.24e-01 7.565246060e-02 7.601079812e-02 7.4e-13 0.00
20 2.1e-12 2.7e-11 3.0e-14 -2.88e-01 7.190741824e-02 7.271901375e-02 2.7e-13 0.00
21 2.5e-13 1.1e-11 9.4e-15 1.89e-01 6.770611682e-02 6.820694122e-02 1.1e-13 0.00
22 1.1e-13 1.1e-11 9.4e-15 9.43e-01 6.769648486e-02 6.819574786e-02 1.1e-13 0.00
23 1.1e-13 1.1e-11 9.4e-15 9.43e-01 6.769648486e-02 6.819574786e-02 1.1e-13 0.00
24 1.1e-13 1.1e-11 9.4e-15 9.43e-01 6.769648486e-02 6.819574786e-02 1.1e-13 0.00
25 9.9e-14 9.9e-12 8.1e-15 9.43e-01 6.739025213e-02 6.783997731e-02 9.9e-14 0.00
26 9.9e-14 9.9e-12 8.1e-15 9.33e-01 6.739025213e-02 6.783997731e-02 9.9e-14 0.00
27 3.4e-13 9.9e-12 8.1e-15 9.33e-01 6.738791310e-02 6.783728139e-02 9.9e-14 0.00
28 3.4e-13 9.9e-12 8.1e-15 9.33e-01 6.738791310e-02 6.783728139e-02 9.9e-14 0.00
29 3.4e-13 9.9e-12 8.1e-15 1.31e+00 6.738791310e-02 6.783728139e-02 9.9e-14 0.00
Optimizer terminated. Time: 0.00

Interior-point solution summary
Problem status : ILL_POSED
Solution status : DUAL_ILLPOSED_CER
Primal. obj: 8.4518724610e-07 nrm: 1e+01 Viol. con: 5e-09 var: 0e+00 cones: 0e+00
Optimizer summary
Optimizer - time: 0.00
Interior-point - iterations : 30 time: 0.00
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00


Status: Failed
Optimal value (cvx_optval): NaN

In continuation to the above problem, solver SeDuMi is showing status as “solved” but the waveform that is generating is not in a aproper manner (since unoptimized is better than the optimized for some power values) and it is clearly visible in the below graph:


Please suggest something to handle this type of issue; I am stucking at this point and unable to move further in my code!