Hello, everyone! Iβm having the following problem: After adding a second-order cone constraint, the original problem becomes unfeasible. My code and original issue are below.
clear all;
S = 2;
C = 8;
U = 30;
T = 5;
Ntx = 2;
Nty = 2;
Nt = Ntx * Nty;
%
C_pos = [175.63, 106.87; 136.30, 43.52; 45.78, 130.01; 112.98, 160.91; 203.56, 61.04; 211.69, 102.28; 199.17, 156.30; 250.84, 82.47];
S_height = 2000; % km
s1_pos = [106, 95];
offset = 2;
S1_pos = zeros(2, T);
S1_pos(:, 1) = s1_pos';
for t = 2:T
S1_pos(:, t) = S1_pos(:, t-1) + offset;
end
s2_pos = [106, 95];
S2_pos = zeros(2, T);
S2_pos(:, 1) = s2_pos';
for t = 2:T
S2_pos(:, t) = S2_pos(:, t-1) + offset;
end
C1_user_pos = [
171.2722264020125, 109.00801070894408;
170.78417466125165, 108.35008091794222;
173.67173899833338, 108.37931961155354;
174.57454953552102, 110.32493726720683
];
C2_user_pos = [
139.40651298082275, 38.67803930763517;
136.32860551422957, 42.16289711432755;
137.82744015490138, 49.40391946858323
];
C3_user_pos = [
50.220941592900196, 127.20160520535724;
44.84591869552337, 131.65090563826476;
44.000564580961424, 129.4559770874314;
43.8824784449596, 125.8989690461711
];
C4_user_pos = [
113.08499873947316, 158.80371594827875;
111.5920437225002, 164.10212705332233;
116.41936814395419, 163.36229468704227;
116.19780560454484, 160.09214237182525
];
C5_user_pos = [
205.220426703268, 65.84596511048743;
202.8614646798177, 60.19082268959938;
203.8759909567894, 65.23328051265051;
203.66097558905423, 60.33373793784346;
];
C6_user_pos = [
216.05019293657938, 105.26821222254914;
209.9937625083976, 102.80067798301602;
212.47281462868258, 101.69097593870022
];
C7_user_pos = [
198.13023757449002, 156.0800008435594;
192.6303832555794, 157.87173209488702;
193.86260478222596, 150.9149777689437;
199.26240273494048, 157.46780698355275
];
C8_user_pos = [
249.9419764502806, 86.23344713333803;
253.8960558978885, 85.18919781572083;
255.8605921815085, 81.64237655577355;
249.118031669222, 82.20905242308542
];
user_positions = {
C1_user_pos, C2_user_pos, C3_user_pos, C4_user_pos, ...
C5_user_pos, C6_user_pos, C7_user_pos, C8_user_pos
};
all_user_positions = vertcat(user_positions{:});
user_counts_per_cluster = [4, 3, 4, 4, 4, 3, 4, 4];
cluster_user_indices = cell(1, length(user_counts_per_cluster));
start_index = 1;
for c = 1:length(user_counts_per_cluster)
end_index = start_index + user_counts_per_cluster(c) - 1;
cluster_user_indices{c} = start_index:end_index;
start_index = end_index + 1;
end
disp(cluster_user_indices)
d = zeros(S, U, T);
for m = 1:S
for u = 1:size(all_user_positions, 1)
for t = 1:T
if m == 1
satellite_pos = S1_pos(:, t);
else
satellite_pos = S2_pos(:, t);
end
user_pos = all_user_positions(u, :);
distance = sqrt((satellite_pos(1) - user_pos(1))^2 + ...
(satellite_pos(2) - user_pos(2))^2 + ...
(S_height - 0)^2);
d(m, u, t) = distance;
end
end
end
disp(d) % 2000
c = 3e8;
f_c = 2e9;
g_t = 10;
g_r = 5;
gain = zeros(S, U, T);
for m = 1:S
for u = 1:size(all_user_positions, 1)
for t = 1:T
delta = abs(randn);
dist = d(m, u, t);
gain(m, u, t) = delta * sqrt(g_t * g_r * (c / (4 * pi * f_c * dist * 1e3))^2);
end
end
end
disp("gain")
disp(gain) % 1e-5
% h = zeros(S, Nt, U, T);
h = zeros(Nt, S, U, T);
doppler_shift = 100;
time_delay = 1e-6;
theta_x = 0.1;
theta_y = 0.2;
array_response = @(N, theta) 1/sqrt(N) * exp(-1j * pi * theta * (0:N-1)).';
v_x = array_response(Ntx, theta_x);
v_y = array_response(Nty, theta_y);
v_k = kron(v_x, v_y); % v_kηη»΄εΊ¦δΈΊ Nt^2 x 1
for m = 1:S
for u = 1:size(all_user_positions, 1)
for t = 1:T
% fprintf('m = %d, i = %d, n = %d, t = %d\n', m, i, n, t);
g_m_i_n_t = gain(m, u, t);
phase_factor = exp(1j * 2 * pi * (doppler_shift * t - f_c * time_delay));
h(:, m, u, t) = g_m_i_n_t * phase_factor * v_k * 1e7;
end
end
end
h1 = h(:, 1, :, :);
h2 = h(:, 2, :, :);
H1 = zeros(Nt, Nt, T);
H2 = zeros(Nt, Nt, T);
for t = 1:T
h1_t = h1(:, :, t);
h2_t = h2(:, :, t);
H1(:, :, t) = h1_t * h1_t';
H2(:, :, t) = h2_t * h2_t';
end
disp('H1:');
disp(H1) % 1e-8
disp('H2:');
disp(H2)
wide_beam_cover_matrix = [
[1, 1, 1, 1, 0, 0, 0, 0];
[1, 0, 0, 0, 1, 1, 1, 1]
];
wideBeamCover = zeros(S, C, T);
for t = 1:T
wideBeamCover(:, :, t) = wide_beam_cover_matrix;
end
spotBeamCover = zeros(S, C, T);
for t = 1:T
for s = 1:S
available_clusters = find(wideBeamCover(s, :, t) == 1);
if length(available_clusters) <= 3
selected_clusters = available_clusters;
else
selected_clusters = randsample(available_clusters, 3);
end
spotBeamCover(s, selected_clusters, t) = 1;
end
end
total_users_covered_by_spotbeam = zeros(S, T);
for s = 1:S
for t = 1:T
covered_clusters = find(spotBeamCover(s, :, t) == 1);
total_users_covered = sum(user_counts_per_cluster(covered_clusters));
total_users_covered_by_spotbeam(s, t) = total_users_covered;
end
end
k = 1.38e-23;
noise_T = 290;
B = 20e6;
F = 10;
P_noise = k * noise_T * B * F * 1e11;
disp(P_noise) % 1e-13
P_beam = 10 * ones(Nt, 1);
disp(P_beam)
Asc2_prev = rand(U, T);
% Asc2_prev = ones(U, T);
Bc2_prev = rand(U, T);
Cn2_prev = rand(U, T);
TAOsc_prev_external = 1000 + (20 - 10) * rand(U, T);
TAOc_prev = rand(U, T);
TAOn_prev = rand(U, T);
total_users_per_timeslot = zeros(1, T);
for t = 1:T
scheduled_clusters = false(1, C);
for s = 1:S
scheduled_clusters = scheduled_clusters | (spotBeamCover(s, :, t) > 0);
end
unique_users = [];
for c = 1:C
if scheduled_clusters(c)
cluster_users = cluster_user_indices{c};
unique_users = union(unique_users, cluster_users);
end
end
total_users_per_timeslot(t) = length(unique_users);
end
lambda_max_Usc = zeros(S, T);
v_max_Usc = ones(Nt, S, T) / sqrt(Nt);
lambda_max_Uc = zeros(S, C, T);
v_max_Uc = ones(Nt, S, C, T) / sqrt(Nt);
lambda_max_Un = zeros(S, U, T);
v_max_Un = ones(Nt, S, U, T) / sqrt(Nt);
% cvx_solver Mosek
for iter = 1:3
% TAOsc_prev_external = max(TAOsc_prev_external, 1e-6);
cvx_begin sdp
variable Usc(Nt, Nt, S, T) semidefinite;
variable Uc(Nt, Nt, S, C, T) semidefinite;
variable Un(Nt, Nt, S, U, T) semidefinite;
% variable Qsc(U, T);
variable Rsc(T);
% variable Qc(U, T);
variable Rc(C, T);
variable Qn(U, T);
variable Asc1(U, T);
variable Asc2(U, T);
variable Bc1(U, T);
variable Bc2(U, T);
variable Cn1(U, T);
variable Cn2(U, T);
variable TAOsc(U, T);
variable TAOc(U, T);
variable TAOn(U, T);
expression O;
% expression H(Nt, Nt);
expression Qsc(U, T);
expression Qc(U, T);
expression P_total(Nt, S, T);
expression A2LHS(U, T);
expression A1RHS(U, T);
expression B2LHS(U, T);
expression B1RHS(U, T);
expression C2LHS(U, T);
expression C1RHS(U, T);
expression TAOsc_prev(U, T);
expression value;
TAOsc_prev = TAOsc_prev_external;
for t = 1:T % O
O = 0;
O = O + Rsc(t) / total_users_per_timeslot(t);
end
for t = 1:T % C12
for s = 1:S
P_total(:, s, t) = 0;
P_total(:, s, t) = P_total(:, s, t) + diag(Usc(:,:,s,t));
end
end
f = 0;
for s = 1:S
for t = 1:T
f = f + trace(Usc(:, :, s, t)) - v_max_Usc(:, s, t)' * Usc(:, :, s, t) * v_max_Usc(:, s, t);
end
end
maximize(O - f);
subject to
for t = 1:T
for s = 1:S
for c = 1:C
if spotBeamCover(s, c, t) == 1
user_indices = cluster_user_indices{c};
for u = user_indices
Rsc(t) <= Qsc(u, t);
end
end
end
end
end
for t = 1:T
for c = 1:C
user_indices = cluster_user_indices{c};
for u = user_indices
Rc(c, t) <= Qc(u, t);
end
end
end
for t = 1:T
Rsc(t) >= 1e-5;
end
for t = 1:T
for c = 1:C
Rc(c, t) >= 1e-5;
end
end
for t = 1:T
for u = 1:U
Qn(u, t) >= 1e-5;
end
end
for t = 1:T % C12
for s = 1:S
P_total(:, s, t) <= P_beam;
end
end
for t = 1:T % C1
for u = 1:U
Asc1(u, t) - Asc2(u, t) >= Qsc(u, t);
end
end
for t = 1:T % C13ε·¦δΎ§
for s = 1:S
if s == 1
H = H1(:, :, t);
else
H = H2(:, :, t);
end
for c = 1:C
if spotBeamCover(s, c, t) == 1
A2LHS(u, t) = A2LHS(u, t) + trace(H * Uc(:, :, s, c, t));
for u = 1:U
if ismember(u, cluster_user_indices{c})
A2LHS(u, t) = A2LHS(u, t) + trace(H * Un(:, :, s, u, t));
end
end
end
end
A2LHS(u, t) = A2LHS(u, t) + P_noise;
% ------
end
end
for t = 1:T
for s = 1:S
if s == 1
H = H1(:, :, t);
else
H = H2(:, :, t);
end
A1RHS(u, t) = A2LHS(u, t) + trace(H * Usc(:, :, s, t));
end
end
for t = 1:T % C13
for u = 1:U
value = exp(Asc2_prev(u, t));
% Asc2_prev(u, t) + rel_entr(1, value) <= 0;
A2LHS(u, t) <= value * (Asc2(u, t) - Asc2_prev(u, t) + 1);
end
end
for t = 1:T % C16
for u = 1:U
TAOsc(u, t) <= A1RHS(u, t);
% TAOsc(u, t) >= 0;
end
end
for t = 1:T % C25
for u = 1:U
norm([TAOsc(u, t) + Asc1(u, t) - (log(TAOsc_prev(u, t)) + 1), 2 * sqrt(TAOsc_prev(u, t))], 2) ...
<= TAOsc(u, t) - Asc1(u, t) + log(TAOsc_prev(u, t)) + 1;
end
end
cvx_end
Asc2_prev = Asc2;
for s = 1:S
for t = 1:T
P = Usc(:, :, s, t);
disp("P")
disp(P)
[V, D] = eig(double(P));
[lambda_max, idx] = max(diag(D));
v_max = V(:, idx);
v_max = v_max / norm(v_max); % ε½δΈε
lambda_max_Usc(s, t) = lambda_max;
v_max_Usc(:, s, t) = v_max;
end
end
end
original issue:
sorry, iβm new to. I can only post one picture.
The output of cvx solver as below:
ljTest
εη°η¨ζ·η΄’εΌ
{[1 2 3 4]} {[5 6 7]} {[8 9 10 11]} {[12 13 14 15]} {[16 17 18 19]} {[20 21 22]} {[23 24 25 26]} {[27 28 29 30]}
θ·η¦»
(:,:,1) =
1.0e+03 *
ε 1 θ³ 13
2.0011 2.0011 2.0012 2.0012 2.0011 2.0009 2.0008 2.0010 2.0013 2.0013 2.0012 2.0010 2.0012
2.0011 2.0011 2.0012 2.0012 2.0011 2.0009 2.0008 2.0010 2.0013 2.0013 2.0012 2.0010 2.0012
ε 14 θ³ 26
2.0012 2.0011 2.0027 2.0026 2.0026 2.0027 2.0031 2.0027 2.0028 2.0031 2.0029 2.0027 2.0031
2.0012 2.0011 2.0027 2.0026 2.0026 2.0027 2.0031 2.0027 2.0028 2.0031 2.0029 2.0027 2.0031
ε 27 θ³ 30
2.0052 2.0055 2.0057 2.0052
2.0052 2.0055 2.0057 2.0052
(:,:,2) =
1.0e+03 *
ε 1 θ³ 13
2.0010 2.0010 2.0011 2.0012 2.0011 2.0010 2.0008 2.0011 2.0013 2.0013 2.0012 2.0010 2.0011
2.0010 2.0010 2.0011 2.0012 2.0011 2.0010 2.0008 2.0011 2.0013 2.0013 2.0012 2.0010 2.0011
ε 14 θ³ 26
2.0011 2.0010 2.0026 2.0026 2.0025 2.0026 2.0029 2.0026 2.0027 2.0029 2.0027 2.0026 2.0030
2.0011 2.0010 2.0026 2.0026 2.0025 2.0026 2.0029 2.0026 2.0027 2.0029 2.0027 2.0026 2.0030
ε 27 θ³ 30
2.0051 2.0053 2.0055 2.0050
2.0051 2.0053 2.0055 2.0050
(:,:,3) =
1.0e+03 *
ε 1 θ³ 13
2.0010 2.0009 2.0010 2.0011 2.0011 2.0010 2.0008 2.0011 2.0013 2.0013 2.0013 2.0009 2.0011
2.0010 2.0009 2.0010 2.0011 2.0011 2.0010 2.0008 2.0011 2.0013 2.0013 2.0013 2.0009 2.0011
ε 14 θ³ 26
2.0010 2.0009 2.0025 2.0025 2.0025 2.0026 2.0028 2.0025 2.0026 2.0028 2.0026 2.0024 2.0028
2.0010 2.0009 2.0025 2.0025 2.0025 2.0026 2.0028 2.0025 2.0026 2.0028 2.0026 2.0024 2.0028
ε 27 θ³ 30
2.0049 2.0052 2.0054 2.0049
2.0049 2.0052 2.0054 2.0049
(:,:,4) =
1.0e+03 *
ε 1 θ³ 13
2.0009 2.0009 2.0010 2.0010 2.0012 2.0010 2.0008 2.0011 2.0014 2.0014 2.0013 2.0008 2.0010
2.0009 2.0009 2.0010 2.0010 2.0012 2.0010 2.0008 2.0011 2.0014 2.0014 2.0013 2.0008 2.0010
ε 14 θ³ 26
2.0010 2.0009 2.0025 2.0025 2.0024 2.0025 2.0027 2.0024 2.0025 2.0026 2.0024 2.0023 2.0027
2.0010 2.0009 2.0025 2.0025 2.0024 2.0025 2.0027 2.0024 2.0025 2.0026 2.0024 2.0023 2.0027
ε 27 θ³ 30
2.0048 2.0051 2.0053 2.0048
2.0048 2.0051 2.0053 2.0048
(:,:,5) =
1.0e+03 *
ε 1 θ³ 13
2.0008 2.0008 2.0009 2.0009 2.0012 2.0010 2.0009 2.0012 2.0014 2.0014 2.0014 2.0008 2.0009
2.0008 2.0008 2.0009 2.0009 2.0012 2.0010 2.0009 2.0012 2.0014 2.0014 2.0014 2.0008 2.0009
ε 14 θ³ 26
2.0009 2.0008 2.0024 2.0024 2.0024 2.0025 2.0026 2.0023 2.0024 2.0025 2.0023 2.0022 2.0026
2.0009 2.0008 2.0024 2.0024 2.0024 2.0025 2.0026 2.0023 2.0024 2.0025 2.0023 2.0022 2.0026
ε 27 θ³ 30
2.0047 2.0050 2.0051 2.0047
2.0047 2.0050 2.0051 2.0047
gain
(:,:,1) =
1.0e-07 *
ε 1 θ³ 13
0.4832 0.4636 0.3352 0.8041 0.3886 0.1264 0.0020 0.2000 0.3531 0.0617 0.3165 0.3663 0.1776
0.0250 0.3652 0.1617 0.1210 0.2288 0.4283 0.0948 0.3266 0.0467 0.3054 0.2902 0.3457 0.2305
ε 14 θ³ 26
0.4538 0.1754 0.2422 0.0166 0.1560 0.4247 0.2759 0.2748 0.7729 0.8683 0.2686 0.4999 0.9368
0.1330 0.3269 0.1522 0.4181 0.5436 0.5103 0.2075 0.0811 0.3165 0.1324 0.1309 0.1839 0.4835
ε 27 θ³ 30
0.5068 0.2555 0.2304 0.5054
0.3179 0.1439 0.4256 0.0716
(:,:,2) =
1.0e-06 *
ε 1 θ³ 13
0.0046 0.0039 0.0047 0.0773 0.0013 0.0399 0.0065 0.0694 0.0005 0.1093 0.0132 0.0090 0.0298
0.0722 0.0079 0.0174 0.0234 0.0475 0.0332 0.0274 0.0224 0.0336 0.0824 0.0263 0.0260 0.0248
ε 14 θ³ 26
0.0354 0.0831 0.0053 0.0576 0.0031 0.0293 0.0835 0.0047 0.0770 0.0376 0.0717 0.0556 0.0199
0.0187 0.0016 0.0084 0.1070 0.0557 0.0103 0.1005 0.0330 0.0485 0.0139 0.0188 0.0100 0.0650
ε 27 θ³ 30
0.0259 0.0307 0.0101 0.0389
0.0062 0.0270 0.0444 0.0019
(:,:,3) =
1.0e-06 *
ε 1 θ³ 13
0.0388 0.0168 0.0391 0.0184 0.0106 0.0160 0.0873 0.0020 0.0208 0.0171 0.0144 0.0054 0.0561
0.0630 0.0140 0.1038 0.0057 0.0022 0.0074 0.0136 0.0137 0.0504 0.0334 0.0419 0.0805 0.0011
ε 14 θ³ 26
0.0223 0.0135 0.0519 0.0297 0.0092 0.0606 0.0461 0.0100 0.0200 0.0240 0.0874 0.0317 0.0174
0.0196 0.0907 0.0040 0.0596 0.0411 0.0395 0.0161 0.0690 0.0049 0.0153 0.0928 0.0503 0.0364
ε 27 θ³ 30
0.0253 0.0272 0.0725 0.0680
0.0187 0.0009 0.0974 0.0447
(:,:,4) =
1.0e-06 *
ε 1 θ³ 13
0.0013 0.0644 0.0247 0.1020 0.0543 0.0310 0.0018 0.0686 0.0204 0.0171 0.0256 0.0269 0.0125
0.0048 0.0183 0.0469 0.0140 0.0495 0.0043 0.0623 0.0655 0.0219 0.0180 0.0262 0.0056 0.0323
ε 14 θ³ 26
0.0258 0.0686 0.0141 0.0423 0.0010 0.0266 0.0490 0.0314 0.0058 0.0607 0.0372 0.0145 0.0371
0.0094 0.0773 0.0217 0.0260 0.0117 0.0322 0.0527 0.0585 0.0206 0.0023 0.0086 0.0097 0.0129
ε 27 θ³ 30
0.0693 0.1034 0.1126 0.1260
0.0180 0.0249 0.0558 0.0286
(:,:,5) =
1.0e-06 *
ε 1 θ³ 13
0.0263 0.0491 0.0341 0.0279 0.1042 0.0851 0.0008 0.0489 0.0091 0.0051 0.0978 0.0176 0.0238
0.0066 0.0225 0.0593 0.0797 0.0079 0.0030 0.0260 0.0600 0.0260 0.1274 0.0746 0.0387 0.0064
ε 14 θ³ 26
0.0160 0.0422 0.0165 0.0784 0.0286 0.0245 0.0751 0.0702 0.0290 0.0138 0.0331 0.0221 0.1348
0.0262 0.0314 0.0616 0.0248 0.0008 0.0438 0.0242 0.0174 0.0308 0.0110 0.0310 0.0163 0.0588
ε 27 θ³ 30
0.0089 0.0311 0.0221 0.0700
0.0277 0.0099 0.0450 0.0476
H1:
(:,:,1) =
0.0584 + 0.0000i 0.0472 + 0.0343i 0.0555 + 0.0180i 0.0343 + 0.0472i
0.0472 - 0.0343i 0.0584 + 0.0000i 0.0555 - 0.0180i 0.0555 + 0.0180i
0.0555 - 0.0180i 0.0555 + 0.0180i 0.0584 + 0.0000i 0.0472 + 0.0343i
0.0343 - 0.0472i 0.0555 - 0.0180i 0.0472 - 0.0343i 0.0584 + 0.0000i
(:,:,2) =
0.0537 + 0.0000i 0.0435 + 0.0316i 0.0511 + 0.0166i 0.0316 + 0.0435i
0.0435 - 0.0316i 0.0537 + 0.0000i 0.0511 - 0.0166i 0.0511 + 0.0166i
0.0511 - 0.0166i 0.0511 + 0.0166i 0.0537 + 0.0000i 0.0435 + 0.0316i
0.0316 - 0.0435i 0.0511 - 0.0166i 0.0435 - 0.0316i 0.0537 + 0.0000i
(:,:,3) =
0.0281 + 0.0000i 0.0227 + 0.0165i 0.0267 + 0.0087i 0.0165 + 0.0227i
0.0227 - 0.0165i 0.0281 + 0.0000i 0.0267 - 0.0087i 0.0267 + 0.0087i
0.0267 - 0.0087i 0.0267 + 0.0087i 0.0281 + 0.0000i 0.0227 + 0.0165i
0.0165 - 0.0227i 0.0267 - 0.0087i 0.0227 - 0.0165i 0.0281 + 0.0000i
(:,:,4) =
0.1617 + 0.0000i 0.1308 + 0.0950i 0.1537 + 0.0500i 0.0950 + 0.1308i
0.1308 - 0.0950i 0.1617 + 0.0000i 0.1537 - 0.0500i 0.1537 + 0.0500i
0.1537 - 0.0500i 0.1537 + 0.0500i 0.1617 + 0.0000i 0.1308 + 0.0950i
0.0950 - 0.1308i 0.1537 - 0.0500i 0.1308 - 0.0950i 0.1617 + 0.0000i
(:,:,5) =
0.0377 + 0.0000i 0.0305 + 0.0222i 0.0359 + 0.0117i 0.0222 + 0.0305i
0.0305 - 0.0222i 0.0377 + 0.0000i 0.0359 - 0.0117i 0.0359 + 0.0117i
0.0359 - 0.0117i 0.0359 + 0.0117i 0.0377 + 0.0000i 0.0305 + 0.0222i
0.0222 - 0.0305i 0.0359 - 0.0117i 0.0305 - 0.0222i 0.0377 + 0.0000i
H2:
(:,:,1) =
1.0e-03 *
0.1563 + 0.0000i 0.1265 + 0.0919i 0.1487 + 0.0483i 0.0919 + 0.1265i
0.1265 - 0.0919i 0.1563 + 0.0000i 0.1487 - 0.0483i 0.1487 + 0.0483i
0.1487 - 0.0483i 0.1487 + 0.0483i 0.1563 + 0.0000i 0.1265 + 0.0919i
0.0919 - 0.1265i 0.1487 - 0.0483i 0.1265 - 0.0919i 0.1563 + 0.0000i
(:,:,2) =
0.0333 + 0.0000i 0.0270 + 0.0196i 0.0317 + 0.0103i 0.0196 + 0.0270i
0.0270 - 0.0196i 0.0333 + 0.0000i 0.0317 - 0.0103i 0.0317 + 0.0103i
0.0317 - 0.0103i 0.0317 + 0.0103i 0.0333 + 0.0000i 0.0270 + 0.0196i
0.0196 - 0.0270i 0.0317 - 0.0103i 0.0270 - 0.0196i 0.0333 + 0.0000i
(:,:,3) =
0.0065 + 0.0000i 0.0053 + 0.0038i 0.0062 + 0.0020i 0.0038 + 0.0053i
0.0053 - 0.0038i 0.0065 + 0.0000i 0.0062 - 0.0020i 0.0062 + 0.0020i
0.0062 - 0.0020i 0.0062 + 0.0020i 0.0065 + 0.0000i 0.0053 + 0.0038i
0.0038 - 0.0053i 0.0062 - 0.0020i 0.0053 - 0.0038i 0.0065 + 0.0000i
(:,:,4) =
0.0037 + 0.0000i 0.0030 + 0.0022i 0.0035 + 0.0011i 0.0022 + 0.0030i
0.0030 - 0.0022i 0.0037 + 0.0000i 0.0035 - 0.0011i 0.0035 + 0.0011i
0.0035 - 0.0011i 0.0035 + 0.0011i 0.0037 + 0.0000i 0.0030 + 0.0022i
0.0022 - 0.0030i 0.0035 - 0.0011i 0.0030 - 0.0022i 0.0037 + 0.0000i
(:,:,5) =
0.0131 + 0.0000i 0.0106 + 0.0077i 0.0125 + 0.0040i 0.0077 + 0.0106i
0.0106 - 0.0077i 0.0131 + 0.0000i 0.0125 - 0.0040i 0.0125 + 0.0040i
0.0125 - 0.0040i 0.0125 + 0.0040i 0.0131 + 0.0000i 0.0106 + 0.0077i
0.0077 - 0.0106i 0.0125 - 0.0040i 0.0106 - 0.0077i 0.0131 + 0.0000i
εͺε£°εη
0.0800
ζ³’ζεη
10
10
10
10
Calling SDPT3 4.0: 6199 variables, 754 equality constraints
num. of constraints = 754
dim. of sdp var = 1560, num. of sdp blk = 390
dim. of socp var = 450, num. of socp blk = 150
dim. of linear var = 949
dim. of free var = 900 *** convert ublk to lblk
SDPT3: Infeasible path-following algorithms
version predcorr gam expon scale_data
HKM 1 0.000 1 0
it pstep dstep pinfeas dinfeas gap prim-obj dual-obj cputime
0|0.000|0.000|1.1e+02|3.2e+02|2.7e+08| 7.851976e+03 0.000000e+00| 0:0:00| spchol 1 1
1|0.234|0.853|8.3e+01|4.8e+01|9.0e+07| 1.512301e+04 4.229251e+05| 0:0:00| spchol 1 1
2|0.602|0.960|3.3e+01|2.1e+00|3.6e+07| 6.940372e+03 4.700398e+05| 0:0:00| spchol 1 1
3|0.942|1.000|1.9e+00|1.3e-01|1.7e+06| 5.010671e+02 5.336377e+05| 0:0:00| spchol 1 1
4|0.460|0.724|1.0e+00|8.0e-02|8.6e+05| 3.266040e+02 1.821062e+06| 0:0:00| spchol 1 1
5|0.071|0.280|9.6e-01|6.6e-02|2.8e+06| 3.120497e+02 2.037033e+07| 0:0:00| spchol 1 1
6|0.051|0.150|9.1e-01|6.6e-02|1.6e+07| 2.954795e+02 4.092222e+08| 0:0:00| spchol 1 1
7|0.006|0.360|9.1e-01|4.5e-02|4.2e+09| 2.956842e+02 3.253824e+11| 0:0:00| spchol 2 2
8|0.001|0.020|9.0e-01|5.2e-02|7.8e+11| 3.368949e+02 2.571487e+14| 0:0:00| spchol 2 2
9|0.000|0.261|9.0e-01|5.9e-02|3.5e+16| 3.736175e+02 2.157497e+19| 0:0:00| spchol
linsysolve: Schur complement matrix not positive definite
switch to LU factor. splu 2 1
stop: Z not positive definite
10|0.000|0.000|9.0e-01|5.9e-02|3.5e+16| 3.736175e+02 2.157497e+19| 0:0:00|
prim_inf,dual_inf,relgap = 9.05e-01, 5.85e-02, 1.61e-03
sqlp stop: primal problem is suspected of being infeasible
number of iterations = 10
residual of primal infeasibility
certificate (y,Z) = 2.55e-19
reldist to infeas. <= 2.18e-19
Total CPU time (secs) = 0.37
CPU time per iteration = 0.04
termination code = 1
DIMACS: 1.1e+01 0.0e+00 2.2e-01 0.0e+00 -1.0e+00 1.6e-03
Status: Infeasible
Optimal value (cvx_optval): -Inf
P
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
P
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
P
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
P
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
P
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
P
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
P
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
P
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
P
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
P
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
ιθ――δ½Ώη¨ * (第 55 θ‘)
Disciplined convex programming error:
Invalid numeric values (NaNs) may not be used in CVX expressions.
εΊι ljTest (第 365 θ‘)
f = f + trace(Usc(:, :, s, t)) - v_max_Usc(:, s, t)β * Usc(:, :, s, t) * v_max_Usc(:, s, t);
My questions are 1) how to select suitable input date and how to scale 2) why after adding a second-order cone constraint, the original problem becomes unfeasible
Looking forward to everyoneβs suggestions, thank you very much!