I have an iterative alternating optimization algorithm on Mosek. It runs successfully in initial several times, but will be the Infeasible after. Strangly, the iteration number before infeasible status increases, when I increase a parameter (which is positive correlation with the size of variable) in my environment.
I don’t know why it will be infeasible several times after. Can you help me ?
The print of solver is:
Calling Mosek 9.1.9: 398 variables, 172 equality constraints
For improved efficiency, Mosek is solving the dual problem.MOSEK Version 9.1.9 (Build date: 2019-11-21 11:34:40)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Windows/64-X86Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 172
Cones : 72
Scalar variables : 398
Matrix variables : 0
Integer variables : 0Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 36
Eliminator terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries : 2 time : 0.00
Lin. dep. - tries : 1 time : 0.01
Lin. dep. - number : 0
Presolve terminated. Time: 0.03
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 172
Cones : 72
Scalar variables : 398
Matrix variables : 0
Integer variables : 0Optimizer - threads : 6
Optimizer - solved problem : the primal
Optimizer - Constraints : 108
Optimizer - Cones : 72
Optimizer - Scalar variables : 323 conic : 216
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 2736 after factor : 2736
Factor - dense dim. : 0 flops : 3.13e+05
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 1.1e+00 2.4e+03 2.2e+00 0.00e+00 1.248000000e+00 0.000000000e+00 1.0e+00 0.05
1 4.9e-01 1.1e+03 1.5e+00 -9.97e-01 -7.025453946e+00 -7.052587232e+00 4.5e-01 0.13
2 2.4e-01 5.3e+02 1.0e+00 -9.89e-01 -1.840778278e+01 -1.626236371e+01 2.2e-01 0.13
3 8.2e-02 1.8e+02 5.7e-01 -9.60e-01 -6.758053191e+01 -5.805701666e+01 7.4e-02 0.13
4 7.9e-03 1.7e+01 1.1e-01 -8.10e-01 -5.241792360e+02 -4.771390819e+02 7.2e-03 0.14
5 1.8e-03 3.9e+00 2.3e-02 6.37e-03 -7.653769814e+02 -7.276327213e+02 1.6e-03 0.14
6 4.5e-04 9.9e-01 1.2e-02 -3.15e-01 -8.729409703e+02 -7.086695354e+02 4.1e-04 0.14
7 3.6e-06 7.8e-03 8.7e-04 -8.11e-01 -1.482981838e+04 -7.537200910e+02 3.3e-06 0.14
8 8.8e-14 1.7e-10 2.2e-07 -9.99e-01 -9.024137793e+11 -7.015536776e+02 7.1e-14 0.14
Optimizer terminated. Time: 0.19Interior-point solution summary
Problem status : DUAL_INFEASIBLE
Solution status : DUAL_INFEASIBLE_CER
Primal. obj: -2.3809033638e-01 nrm: 2e+05 Viol. con: 7e-13 var: 0e+00 cones: 0e+00
Optimizer summary
Optimizer - time: 0.19
Interior-point - iterations : 8 time: 0.16
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00
Status: Infeasible
Optimal value (cvx_optval): +Inf