QP problem infeasible

Thanks Erling!

I tried by setting Mosek as the solver. It still reports Infeasible. Below is the log.

I don’t think my original problem is small, but probably ill posted. BTW, what is your definition of “ill posted” in this context. I checked the eigenvalues of H, they range from 7.4 to 4231. Do you think that would be an issue?

Calling Mosek 8.0.0.60: 20 variables, 10 equality constraints
   For improved efficiency, Mosek is solving the dual problem.
------------------------------------------------------------

MOSEK Version 8.0.0.60 (Build date: 2017-3-1 13:08:15)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: MACOSX/64-X86

Problem
  Name                   :                 
  Objective sense        : min             
  Type                   : CONIC (conic optimization problem)
  Constraints            : 10              
  Cones                  : 1               
  Scalar variables       : 20              
  Matrix variables       : 0               
  Integer variables      : 0               

Optimizer started.
Conic interior-point optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator - tries                  : 0                 time                   : 0.00            
Lin. dep.  - tries                  : 1                 time                   : 0.00            
Lin. dep.  - number                 : 0               
Presolve terminated. Time: 0.03    
Optimizer  - threads                : 8               
Optimizer  - solved problem         : the primal      
Optimizer  - Constraints            : 10
Optimizer  - Cones                  : 1
Optimizer  - Scalar variables       : 20                conic                  : 11              
Optimizer  - Semi-definite variables: 0                 scalarized             : 0               
Factor     - setup time             : 0.00              dense det. time        : 0.00            
Factor     - ML order time          : 0.00              GP order time          : 0.00            
Factor     - nonzeros before factor : 55                after factor           : 55              
Factor     - dense dim.             : 0                 flops                  : 1.16e+03        
ITE PFEAS    DFEAS    GFEAS    PRSTATUS   POBJ              DOBJ              MU       TIME  
0   4.3e+01  2.0e+00  1.0e+00  0.00e+00   0.000000000e+00   0.000000000e+00   1.0e+00  0.07  
1   1.2e+01  5.8e-01  1.6e-01  -9.61e-01  -1.477103024e+04  -1.239807234e+04  2.8e-01  0.18  
2   1.9e+00  9.0e-02  1.0e-02  -9.17e-01  -1.521790624e+05  -1.337839949e+05  4.5e-02  0.19  
3   4.3e-01  2.0e-02  1.0e-03  -1.02e+00  -8.203214330e+05  -7.270882589e+05  9.9e-03  0.19  
4   7.7e-02  3.6e-03  8.0e-05  -1.03e+00  -4.602185412e+06  -4.092154367e+06  1.8e-03  0.20  
5   2.3e-02  1.1e-03  1.3e-05  -1.01e+00  -1.534627786e+07  -1.355901597e+07  5.3e-04  0.21  
6   5.1e-03  2.4e-04  1.5e-06  -9.15e-01  -5.938465367e+07  -5.280980264e+07  1.2e-04  0.21  
7   2.1e-03  9.8e-05  4.1e-07  -8.05e-01  -1.317777723e+08  -1.175475667e+08  4.8e-05  0.22  
8   8.6e-04  4.0e-05  1.3e-07  -6.90e-01  -2.606955321e+08  -2.362378814e+08  2.0e-05  0.23  
9   6.2e-04  2.9e-05  7.3e-08  -8.49e-01  -3.475929339e+08  -3.073592514e+08  1.4e-05  0.24  
10  1.7e-04  7.9e-06  1.5e-08  -6.14e-01  -7.952656486e+08  -7.279292878e+08  3.9e-06  0.25  
11  8.3e-05  3.9e-06  5.1e-09  -6.11e-01  -1.372043837e+09  -1.226971478e+09  1.9e-06  0.25  
12  2.5e-05  1.2e-06  1.4e-09  -3.07e-01  -2.419664943e+09  -2.252133524e+09  5.7e-07  0.26  
13  1.2e-05  5.4e-07  4.7e-10  -3.64e-01  -3.934811142e+09  -3.595866314e+09  2.7e-07  0.26  
14  3.8e-06  1.8e-07  1.7e-10  4.44e-03   -5.517624836e+09  -5.238242709e+09  8.9e-08  0.27  
15  1.9e-06  8.9e-08  5.5e-11  -3.25e-01  -8.518372321e+09  -7.882735003e+09  4.4e-08  0.28  
16  5.3e-07  2.5e-08  2.0e-11  1.97e-01   -1.082937275e+10  -1.043513068e+10  1.2e-08  0.29  
17  2.1e-07  1.0e-08  5.6e-12  -1.34e-01  -1.570796250e+10  -1.491996978e+10  4.9e-09  0.30  
18  6.2e-08  2.9e-09  2.2e-12  3.91e-01   -1.798930307e+10  -1.755207597e+10  1.4e-09  0.30  
19  2.6e-08  1.2e-09  7.3e-13  5.73e-02   -2.201673410e+10  -2.133380455e+10  6.0e-10  0.31  
20  5.8e-09  2.7e-10  2.8e-13  6.47e-01   -2.313278214e+10  -2.289666973e+10  1.4e-10  0.32  
21  1.7e-09  8.2e-11  1.0e-13  5.44e-01   -2.410348688e+10  -2.395063203e+10  4.0e-11  0.32  
22  2.1e-10  9.8e-12  1.3e-14  9.05e-01   -2.423102718e+10  -2.421003436e+10  4.8e-12  0.33  
23  1.6e-10  1.1e-12  1.7e-14  9.60e-01   -2.425153769e+10  -2.424900041e+10  5.4e-13  0.34  
24  1.6e-10  1.1e-12  1.7e-14  9.90e-01   -2.425153769e+10  -2.424900041e+10  5.4e-13  0.34  
Interior-point optimizer terminated. Time: 0.35. 


MOSEK DUAL INFEASIBILITY REPORT.

Problem status: The problem is dual infeasible
Optimizer terminated. Time: 0.46    

Interior-point solution summary
  Problem status  : DUAL_INFEASIBLE
  Solution status : NEAR_DUAL_INFEASIBLE_CER
  Primal.  obj: -3.3135681203e+02   nrm: 3e+02    Viol.  con: 2e-05    var: 0e+00    cones: 0e+00  
Optimizer summary
  Optimizer                 -                        time: 0.46    
    Interior-point          - iterations : 25        time: 0.35    
      Basis identification  -                        time: 0.00    
        Primal              - iterations : 0         time: 0.00    
        Dual                - iterations : 0         time: 0.00    
        Clean primal        - iterations : 0         time: 0.00    
        Clean dual          - iterations : 0         time: 0.00    
    Simplex                 -                        time: 0.00    
      Primal simplex        - iterations : 0         time: 0.00    
      Dual simplex          - iterations : 0         time: 0.00    
    Mixed integer           - relaxations: 0         time: 0.00    

Mosek error: MSK_RES_TRM_STALL ()
------------------------------------------------------------
Status: Inaccurate/Infeasible
Optimal value (cvx_optval): +Inf