# CVX Warning: The successive approximation method

I ran the command by removing quiet. It was running and I paused in middle to have some idea. Here is one of the portion if you can have idea of the MOSEK through it.

Status: Solved
Optimal value (cvx_optval): +0.0154325

## Cones | Errors | Mov/Act | Centering Exp cone Poly cone | Status --------±--------------------------------±-------- 0/ 0 | 0.000e+00 0.000e+00 0.000e+00 | Solved

Status: Solved
Optimal value (cvx_optval): +1.17246e-07

## Calling Mosek 8.0.0.60: 20 variables, 9 equality constraints For improved efficiency, Mosek is solving the dual problem.

MOSEK Version 8.0.0.60 (Build date: 2017-3-1 13:09:33)
Platform: Windows/64-X86

Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 9
Cones : 4
Scalar variables : 20
Matrix variables : 0
Integer variables : 0

Optimizer started.
Conic interior-point optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 4
Eliminator terminated.
Eliminator - tries : 1 time : 0.00
Lin. dep. - tries : 1 time : 0.02
Lin. dep. - number : 0
Presolve terminated. Time: 0.03
Optimizer - solved problem : the primal
Optimizer - Constraints : 5
Optimizer - Cones : 4
Optimizer - Scalar variables : 16 conic : 12
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 14 after factor : 15
Factor - dense dim. : 0 flops : 2.19e+002
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 1.0e+000 8.2e+004 9.7e-001 0.00e+000 -1.280000000e+002 0.000000000e+000 1.0e+000 0.05
1 2.4e-001 1.9e+004 1.1e-001 -1.00e+000 -1.357159655e+004 -1.175038123e+002 2.4e-001 0.11
2 3.6e-002 3.0e+003 6.7e-003 -1.00e+000 -1.095736130e+005 -1.035332055e+003 3.6e-002 0.11
3 7.8e-003 6.4e+002 6.7e-004 -9.98e-001 -5.207496978e+005 -4.741922778e+003 7.8e-003 0.11
4 1.9e-003 1.6e+002 8.1e-005 -9.92e-001 -2.126750067e+006 -2.401347452e+004 1.9e-003 0.11
5 5.7e-004 4.6e+001 1.4e-005 -9.67e-001 -6.675891639e+006 -6.420147261e+004 5.7e-004 0.13
6 1.3e-004 1.1e+001 1.7e-006 -8.90e-001 -2.217625135e+007 -3.107932533e+005 1.3e-004 0.13
7 3.0e-005 2.5e+000 3.3e-007 -5.48e-001 -3.407016953e+007 -5.701063117e+005 3.0e-005 0.13
8 5.3e-006 4.3e-001 1.6e-007 4.54e-001 -4.882423649e+006 -7.755048063e+005 5.3e-006 0.14
9 8.7e-007 7.1e-002 8.6e-008 1.40e+000 -9.505455699e+005 -5.584162080e+005 8.7e-007 0.14
10 1.9e-007 1.6e-002 5.0e-008 1.28e+000 -3.347609712e+005 -2.787997065e+005 1.9e-007 0.14
11 5.7e-008 4.7e-003 2.6e-008 1.30e+000 -5.975955157e+004 -4.188171794e+004 5.7e-008 0.16
12 1.4e-008 1.1e-003 1.3e-008 1.06e+000 -2.121046774e+004 -1.695124711e+004 1.4e-008 0.16
13 3.2e-009 2.6e-004 6.0e-009 1.03e+000 -3.971097134e+003 -2.903923866e+003 3.2e-009 0.16
14 8.8e-010 7.2e-005 3.2e-009 1.02e+000 -1.347111285e+003 -1.058590264e+003 8.8e-010 0.17
15 2.4e-010 2.0e-005 1.6e-009 9.81e-001 -2.847845949e+002 -1.983667564e+002 2.4e-010 0.17
16 6.5e-011 5.3e-006 8.6e-010 1.02e+000 -1.083587790e+002 -8.676254547e+001 6.5e-011 0.17
17 1.6e-011 1.3e-006 4.1e-010 9.79e-001 -1.939286029e+001 -1.358683278e+001 1.6e-011 0.17
18 4.0e-012 3.3e-007 2.1e-010 1.01e+000 -6.824451845e+000 -5.422558785e+000 4.0e-012 0.19
19 9.2e-013 7.6e-008 9.8e-011 9.86e-001 -1.349736513e+000 -1.010872024e+000 9.2e-013 0.19
20 2.5e-013 2.1e-008 5.2e-011 9.96e-001 -4.740496910e-001 -3.837736994e-001 2.5e-013 0.19
21 7.2e-014 5.9e-009 2.7e-011 9.60e-001 -1.382544929e-001 -1.102346335e-001 7.2e-014 0.19
22 2.4e-014 2.0e-009 1.5e-011 9.88e-001 -7.337204267e-002 -6.413274896e-002 2.4e-014 0.20
23 6.1e-015 5.0e-010 7.3e-012 9.22e-001 -2.899842551e-002 -2.634341186e-002 6.1e-015 0.20
24 1.9e-015 1.6e-010 4.1e-012 9.71e-001 -2.145562002e-002 -2.061323889e-002 1.9e-015 0.20
25 9.5e-017 7.8e-012 8.8e-013 9.66e-001 -1.623211784e-002 -1.618683263e-002 9.5e-017 0.20
Interior-point optimizer terminated. Time: 0.22.

Optimizer terminated. Time: 0.27

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -1.6232117836e-002 nrm: 1e+000 Viol. con: 3e-006 var: 6e-005 cones: 0e+000
Dual. obj: -1.6186832629e-002 nrm: 2e+001 Viol. con: 0e+000 var: 4e-010 cones: 0e+000
Optimizer summary
Optimizer - time: 0.27
Interior-point - iterations : 25 time: 0.22
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00