Using Pade approximation for exponential

cone with parameters m=3, k=3

=====================================

Calling Mosek 8.0.0.60: 14025 variables, 6152 equality constraints

For improved efficiency, Mosek is solving the dual problem.

MOSEK Version 8.0.0.60 (Build date: 2017-3-1 13:09:33)

Copyright © MOSEK ApS, Denmark. WWW: mosek.com

Platform: Windows/64-X86

Problem

Name :

Objective sense : min

Type : CONIC (conic optimization problem)

Constraints : 6152

Cones : 3278

Scalar variables : 14025

Matrix variables : 0

Integer variables : 0

Optimizer started.

Conic interior-point optimizer started.

Presolve started.

Linear dependency checker started.

Linear dependency checker terminated.

Eliminator started.

Freed constraints in eliminator : 1578

Eliminator terminated.

Eliminator started.

Freed constraints in eliminator : 0

Eliminator terminated.

Eliminator - tries : 2 time : 0.00

Lin. dep. - tries : 1 time : 0.01

Lin. dep. - number : 0

Presolve terminated. Time: 0.08

Optimizer - threads : 4

Optimizer - solved problem : the primal

Optimizer - Constraints : 4183

Optimizer - Cones : 3279

Optimizer - Scalar variables : 12055 conic : 9659

Optimizer - Semi-definite variables: 0 scalarized : 0

Factor - setup time : 0.05 dense det. time : 0.00

Factor - ML order time : 0.01 GP order time : 0.00

Factor - nonzeros before factor : 6.01e+004 after factor : 7.80e+004

Factor - dense dim. : 9 flops : 7.44e+006

ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME

0 1.0e+000 1.3e+011 9.2e+010 0.00e+000 6.144000000e+018 0.000000000e+000 1.0e+000 0.19

1 4.2e-001 5.4e+010 2.5e+010 -1.00e+000 6.144005700e+018 1.411947656e+004 4.2e-001 0.31

2 1.4e-001 1.8e+010 4.9e+009 -1.00e+000 6.144005496e+018 2.420857526e+003 1.4e-001 0.33

3 1.1e-001 1.4e+010 3.3e+009 -1.00e+000 6.144005213e+018 -4.975828808e+003 1.1e-001 0.36

4 1.0e-001 1.4e+010 3.1e+009 -1.00e+000 6.144005190e+018 -6.443131667e+003 1.0e-001 0.38

5 6.7e-002 8.7e+009 1.6e+009 -1.00e+000 6.144005130e+018 -2.516829627e+004 6.7e-002 0.39

6 2.0e-002 2.6e+009 2.6e+008 -1.00e+000 6.144006399e+018 -1.476053363e+005 2.0e-002 0.41

7 6.1e-003 7.9e+008 4.4e+007 -1.00e+000 6.144005407e+018 -1.458756450e+005 6.1e-003 0.41

8 3.2e-003 4.1e+008 1.6e+007 -1.00e+000 6.144004144e+018 -1.457794956e+005 3.2e-003 0.42

9 6.7e-004 8.7e+007 1.6e+006 -1.00e+000 6.143994059e+018 -1.662173238e+005 6.7e-004 0.44

10 1.4e-004 1.8e+007 1.5e+005 -1.00e+000 6.143944328e+018 -2.455717578e+005 1.4e-004 0.44

11 1.8e-005 2.3e+006 6.8e+003 -1.00e+000 6.143514834e+018 -3.390536241e+005 1.8e-005 0.45

12 3.8e-006 4.9e+005 6.7e+002 -1.00e+000 6.141887462e+018 -3.001514178e+005 3.8e-006 0.47

13 7.2e-007 9.3e+004 5.6e+001 -9.99e-001 6.131005856e+018 -2.955668660e+005 7.2e-007 0.48

14 1.9e-007 2.5e+004 7.9e+000 -9.96e-001 6.097550448e+018 -2.939671249e+005 1.9e-007 0.50

15 4.2e-008 5.5e+003 8.3e-001 -9.84e-001 5.921447577e+018 -2.855706892e+005 4.2e-008 0.50

16 1.1e-008 1.4e+003 1.3e-001 -9.13e-001 5.075491438e+018 -2.439540814e+005 1.1e-008 0.52

17 5.3e-009 6.9e+002 8.1e-002 -2.67e-001 2.857759989e+018 -1.342604837e+005 5.3e-009 0.53

18 1.4e-009 1.9e+002 1.1e-001 1.04e+000 6.208524638e+017 -2.357539610e+004 1.4e-009 0.55

19 5.8e-010 7.6e+001 7.8e-002 1.45e+000 1.966163690e+017 -2.607450346e+003 5.8e-010 0.58

20 2.8e-010 3.7e+001 4.2e-002 1.33e+000 9.048608459e+016 2.592760102e+003 2.8e-010 0.59

21 8.5e-011 1.1e+001 2.4e-002 1.48e+000 2.079357896e+016 5.920053814e+003 8.5e-011 0.61

22 2.7e-011 3.5e+000 1.6e-002 1.38e+000 5.235145245e+015 6.360194783e+003 2.7e-011 0.64

23 9.9e-012 1.3e+000 1.1e-002 1.37e+000 1.599760746e+015 6.438123758e+003 9.9e-012 0.66

24 3.1e-012 4.0e-001 6.9e-003 1.29e+000 4.323774438e+014 6.496806454e+003 3.1e-012 0.67

25 2.5e-012 3.2e-001 6.2e-003 1.16e+000 3.403376642e+014 6.505189052e+003 2.5e-012 0.70

26 5.6e-013 6.5e-002 2.9e-003 1.13e+000 6.587684480e+013 6.530443918e+003 5.0e-013 0.72

27 5.2e-013 6.5e-002 2.9e-003 9.44e-001 6.580498400e+013 6.530485140e+003 5.0e-013 0.77

28 5.2e-013 6.5e-002 2.9e-003 9.46e-001 6.580498400e+013 6.530485140e+003 5.0e-013 0.80

Interior-point optimizer terminated. Time: 0.84.

Optimizer terminated. Time: 0.95

Interior-point solution summary

Problem status : UNKNOWN

Solution status : UNKNOWN

Primal. obj: 6.5804984001e+013 nrm: 3e+012 Viol. con: 4e+000 var: 0e+000 cones: 5e-002

Dual. obj: 6.5304851395e+003 nrm: 1e+013 Viol. con: 0e+000 var: 1e+010 cones: 0e+000

Optimizer summary

Optimizer - time: 0.95

```
Interior-point - iterations : 29 time: 0.84
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00
```

Status: Failed

Optimal value (cvx_optval): NaN