Hi,

I am trying to find the feasible solution to the following problem but CVX generates error. Can anybody help me that the code is correct or not?

```
cvx_begin
m = 5
variables sbsdeltas(m,1) xsbs(m,1) T30(m,1)
maximize 0
subject to
T30 <= logSumkDelta + sum(sbsdeltas - sbsdeltask)./logSumkDelta;
xsbs - log( sum(sbsdeltas) + (sbsdeltas.*B)*C )/log(2) + T30 <= 0;
sum(sbsdeltas) <= constant;
sbsdeltas >= 0;
sbsdeltas <= 1;
T30 >= 0;
```

logSumkDelta, B, C and sbsdeltask are constant terms obtained through Taylor approximation. C is a constant value while B is a vector with values of order 1e+15. When i solved the problem, i got the following error:

## Successive approximation method to be employed.

For improved efficiency, SDPT3 is solving the dual problem.

SDPT3 will be called several times to refine the solution.

Original size: 43 variables, 18 equality constraints

6 exponentials add 48 variables, 30 equality constraints

## Cones | Errors |

Mov/Act | Centering Exp cone Poly cone | Status

--------±--------------------------------±--------

0/ 0 | 0.000e+00 0.000e+00 0.000e+00 | Failed

0/ 0 | 0.000e+00 0.000e+00 0.000e+00 | Solved

Status: Solved

Optimal value (cvx_optval): +0

I would like to know as to why CVX failed to find solution to the above problem.