Okay, let me clear it out more. I have built matrix D as a block diagonal matrix which consists of two variables. So, it is known to the solver that the zero elements are actually zero. right? Is it needed to have them defined again as zeros in the constraints? The zeros in the vector v are known as well. The corresponding elements are absolute zeros and do not contain any variable. Therefore, I think it is not necessary for them to be constrained.
I get much faster results with Mosek. A sample log is shown below.
Calling Mosek 9.1.9: 2253068 variables, 5 equality constraints
For improved efficiency, Mosek is solving the dual problem.
MOSEK Version 9.1.9 (Build date: 2019-11-21 11:34:40)
Copyright © MOSEK ApS, Denmark. WWW: mosek.com
Platform: Windows/64-X86
MOSEK warning 710: #2 (nearly) zero elements are specified in sparse col ‘’ (1) of matrix ‘A’.
MOSEK warning 710: #2 (nearly) zero elements are specified in sparse col ‘’ (2) of matrix ‘A’.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (3) of matrix ‘A’.
MOSEK warning 710: #2 (nearly) zero elements are specified in sparse col ‘’ (4) of matrix ‘A’.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (5) of matrix ‘A’.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (6) of matrix ‘A’.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (7) of matrix ‘A’.
MOSEK warning 710: #2 (nearly) zero elements are specified in sparse col ‘’ (8) of matrix ‘A’.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (9) of matrix ‘A’.
MOSEK warning 710: #1 (nearly) zero elements are specified in sparse col ‘’ (10) of matrix ‘A’.
Warning number 710 is disabled.
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 5
Cones : 1
Scalar variables : 58
Matrix variables : 2
Integer variables : 0
Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries : 2 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.05
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 5
Cones : 1
Scalar variables : 58
Matrix variables : 2
Integer variables : 0
Optimizer - threads : 2
Optimizer - solved problem : the primal
Optimizer - Constraints : 5
Optimizer - Cones : 1
Optimizer - Scalar variables : 6 conic : 4
Optimizer - Semi-definite variables: 2 scalarized : 4507524
Factor - setup time : 0.17 dense det. time : 0.00
Factor - ML order time : 0.02 GP order time : 0.00
Factor - nonzeros before factor : 13 after factor : 13
Factor - dense dim. : 0 flops : 9.76e+08
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 3.0e+03 2.8e+04 4.1e+04 0.00e+00 4.085279960e+04 0.000000000e+00 1.0e+00 12.89
1 1.1e+02 9.8e+02 7.7e+03 -1.00e+00 4.061884336e+04 -1.904483166e+02 3.5e-02 54.45
2 1.0e+00 9.3e+00 7.3e+02 -9.99e-01 1.637792316e+04 -1.987440012e+04 3.4e-04 101.09
3 2.5e-01 2.3e+00 3.0e+02 -8.56e-01 -2.601252164e+04 -4.851715196e+04 8.4e-05 147.02
4 2.3e-02 2.2e-01 1.9e+01 -1.28e-01 -8.017638988e+03 -9.204795001e+03 7.8e-06 192.24
5 1.6e-04 1.5e-03 1.1e-02 8.76e-01 -2.426184544e+02 -2.518768460e+02 5.3e-08 232.72
6 1.5e-05 1.4e-04 3.5e-04 9.81e-01 -2.950384407e+01 -3.016949633e+01 5.1e-09 275.25
7 1.6e-06 1.4e-05 1.7e-05 7.42e-01 -3.447183105e+00 -3.262732936e+00 5.2e-10 316.41
8 3.1e-07 2.9e-06 1.9e-06 6.05e-01 -3.804605588e-01 -2.890084538e-01 1.0e-10 355.17
9 5.5e-08 5.1e-07 1.1e-07 9.69e-01 -8.636310405e-02 -8.240456439e-02 1.8e-11 400.39
10 4.5e-09 4.2e-08 2.4e-09 1.03e+00 -9.003037094e-03 -8.962446359e-03 1.5e-12 441.97
11 1.0e-09 9.3e-09 2.5e-10 1.01e+00 -1.353946126e-03 -1.350535831e-03 3.4e-13 479.45
12 1.0e-10 9.3e-10 7.7e-12 9.99e-01 -1.010703344e-04 -1.026027754e-04 3.4e-14 527.70
13 4.2e-12 3.9e-11 6.5e-14 1.00e+00 -2.738069435e-06 -2.804942637e-06 1.4e-15 573.38
14 7.6e-14 7.1e-13 1.6e-16 1.00e+00 -3.235964008e-08 -3.359637249e-08 2.5e-17 621.45
Optimizer terminated. Time: 621.86
Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -3.2359640084e-08 nrm: 6e+00 Viol. con: 2e-07 var: 7e-15 barvar: 0e+00 cones: 0e+00
Dual. obj: -3.3596372486e-08 nrm: 3e+04 Viol. con: 0e+00 var: 8e-12 barvar: 2e-08 cones: 0e+00
Optimizer summary
Optimizer - time: 621.86
Interior-point - iterations : 14 time: 621.84
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00
Status: Solved
Optimal value (cvx_optval): +3.35964e-08