The program can be run.But Status: Inaccurate/Solved！

I can’t figure out why the result I get has status inaccurate/solved.

I have the following optimization problem:

I have formulated the above optimization problem as follows:

```
%ANTrue:Anchor nodes coordinate matrix(N rows and 2 columns)
%p:The received signal strength(RSS) at the anchor nodes--Column vector
%T:The speed of light multiplied by the time of arrival--T=c*ri Formula 1
%s:Estimated location of the target node
%Speed of light
c=3e8;
%Number of anchor nodes
[N,~] = size(ANTrue);
%Anchor nodes coordinate matrix(2 rows and N columns)
a = ANTrue';
%Signal arrival time at anchor nodes--Column vector
r = T/c;
%Set specific values based on the experimental results of the original text
zeta = 0.1;
mu=0.5;
%Upper bound of NLOS deviation
triangle=4;
%The true value of PLE
gamma=3;
%See below formula 7 in the original text
eta=10*gamma/log(10);
%weights to RSS and TOA measurements
%wr--RSS
%wt--TOA
wt=zeros(N,1);
wr=zeros(N,1);
sumr=sum(r);
sump=sum(1./p);
for i = 1:N
wt(i) = 1-r(i)/sumr;
end
for i = 1:N
wr(i) = 1-1/p(i)/sump;
end
rs=zeros(N,1);
ps=zeros(N,1);
lambda=zeros(N,1);
%See below formula 4 in the original text
for i = 1:N
rs(i) = c*r(i)-mu*triangle;
end
for i = 1:N
ps(i) = p(i)+mu*triangle;
end
%%See below formula 7 in the original text
for i = 1:N
lambda(i)=10^(ps(i)/(10*gamma));
end
cvx_begin
cvx_solver sedumi
%cvx_solver sdpt3
%cvx_precision best
variable f(N,1)
variable g(N,1)
variable h(N,1)
variable s(2,1)
variable z(1,1)
variable d0(1,1)
variable o(1,1)
variable psis
variable theta
minimize (sum(f) + sum(g) + zeta*sum(h))
subject to
for i =1:N
norm([2*sqrt(wt(i))*(rs(i)^2 - 2*rs(i)*d0 + o - z + 2*a(i)'*s - square_pos(norm(a(i))));
4*(z - 2*a(i)'*s + square_pos(norm(a(i)))) - f(i)]) <= 4*(z - 2*a(i)'*s + square_pos(norm(a(i)))) + f(i);
end
for i = 1:N
norm([2*sqrt(wr(i))*eta*(lambda(i)^2*(z - 2*a(i)'*s + square_pos(norm(a(i))))) - psis;
4*theta - g(i)]) <= 4*theta + g(i);
end
for i = 1:N
rs(i) + h(i) >= norm(s-a(i)) + d0;
h(i) >= 0;
end
norm([2*psis;theta - 1]) <= theta + 1;
norm([2*d0;o - 1]) <= o + 1;
norm([2*s;z - 1]) <= z + 1;
cvx_end
```