 Dear All,
Kindly help me with the problem below:
I am really stuck up with it and not able to rectify it.
I am receiving the following errors:

Error using .* (line 173)
Disciplined convex programming error:
Cannot perform the operation: {real affine} ./ {real affine}

Error in ./ (line 19)
z = times( x, y, ‘./’ );

Error in * (line 36)
z = feval( oper, x, y );

Error in / (line 15)
z = mtimes( x, y, ‘rdivide’ );

denominator_term1(i) = (1 - lambda(i))noisepowersi_beta/(lambda(i)*(tau_c - tau_p));

The code is:

cvx_begin
cvx_quiet(true); % This suppresses screen output from the solver

variable lambda(K,1); %Variable for the K x 1 power allocation matrix
variable scaling %Scaling parameter for power constraints

minimize scaling %Minimize the power indirectly by scaling the power constraints

subject to
for i = 1:K
lambda(i) >= 0;
lambda(i) <= scaling;
end

for i = 1:K
for j = 1:K
if (j==i)
term(i,j) = 0;
else
term(i,j) = 1 - lambda(j);
end
end
%Calculation of summmation of K-1 terms in the last term of denominator of SINR
sum_term(i) = sum(term(i,:));

``````%Numerator and denominator terms of SINR
numerator(i) = M.*(1 - lambda(i))*(P*tau_c)/(tau_c - tau_p);

denominator_term1(i) = (1 - lambda(i))*noisepower*si_beta/(lambda(i)*(tau_c - tau_p));
denominator_term2(i) = noisepower*si_beta;
denominator_term3(i) = noisepower*noisepower*epsilon_beta/(lambda(i)*P*tau_c);
denominator_term4(i) = M*P*tau_c*sum_term(i)*((si_beta*mu_beta)+(noisepower*si_beta/(lambda(i)*P*tau_c)))/(tau_c - tau_p);

%SINR constraints
SINRcandidate*(denominator_term1(i) + denominator_term2(i) + denominator_term3(i) + denominator_term4(i)) - numerator(i) <= 0;
``````

end

scaling >= 0; %Power constraints must be positive
cvx_end

Have you proven this problem is convex?