How to solve this optimization problem:

\min_{x_{ij}} x_{11}+x_{12}+x_{13}+x_{21}+x_{22}+x_{23}

s.t.

a_1 x_{12}x_{22}+a_2x_{12}x_{32}+a_3x_{22}x_{32}+\\b_1x_{11}^2+b_2x_{21}^2+b_3x_{31}^2+c_1x_{12}^2+c_2x_{22}^2+c_3x_{32}^2 \le\\\left(d_1x_{11}+d_2x_{21}+d_3x_{31}\right)^2,,

0 \le x_{ij}\le 1, \forall i,j,

where a_{i},b_{i},c_i, and d_i are positive real numbers.

Thanks a lot for your help in advance!