I have the following optimization problem:

\min_{x_i,y_i}~\sum_{i=1}^{n} x_i+y_i \\
\textbf{s.t.}\quad \quad \sum_{i=1}^{n} \ln(1+k_ix_i)+\sum_{i=1}^{n} \ln(1+k_iy_i)\geq B \\
\quad \quad \quad ~ ~ \sum_{i=1}^{n}a_i(3x_i^2+3y_{i}^2+2x_iy_i)+b_{i}(x_i+y_i)+c_i \geq E \\
\quad \quad \quad ~ ~ ~ 0\leq\sum_{i=1}^{n} x_i+y_i \leq S, ~x_{i}\geq 0,~ y_{i} \geq 0.

k_1>k_2> \ldots k_n>0, a_1>a_2> \ldots a_n>0, c_1>c_2> \ldots c_n>0, B>0, E>0 and S>0.

The term 2x_iy_i is against the DCPruleset, hence, the above problem in its current form cannot be solved with CVX. Any idea how to deal with this case?

Thanks