I have this problem

max sum(u_i)

s.t

r_i^2<=A+M1(1-u_i)

where u_i={0,1},

r_i=sqrt([x_i-xd]^2+[y_i-yd]^2). This is the distance between the point (x_i,y_i) and (xd,yd)

The optimization variables are xd,yd and u_i.

The following is my formulation

function [xd,yd,u]=Fun3(Gamma,x,y)

```
global NofUsers
M1=1e4;
%cvx_begin
cvx_begin quiet
cvx_solver Mosek
variable u(NofUsers) binary
variables xd yd
maximize(sum(u))
for i=1:NofUsers
(norm([x(i) y(i)] - [xd yd]))^2 <=Gamma + M1 * (1-u(i));
%((x(i)-xd11)^2 + (y(i)-yd11)^2)^2 <=Gamma + M1 * (1-u(i))
end
cvx_end
% NofUsers_in=cvx_optval;
%NofUsers_in=sum(u)
```

end

When I run the code it gives me an error

Error using cvx/pow_cvx (line 142)

Disciplined convex programming error:

Illegal operation: {convex} .^ {2}

(Consider POW_P, POW_POS, or POW_ABS instead.)

Error in .^ (line 55)

z = pow_cvx( x, y, ‘power’ );

Error in ^ (line 9)

z = power( x, y );

Error in Fun3 (line 12)

(norm([x(i) y(i)] - [xd11 yd11]))^2 <=Gamma + M1 * (1-u(i));

Error in ProgPtLoctnFor1Density (line 70)

[xd,yd,u3]=Fun3(Gamma,x,y);